Solvent Effects on the Charge Transport Behavior in Poly(3,4-ethylenedioxythiophene) Synthesized with Iron (III) -p-toluenesulfonate

Iron(III)-p-toluenesulfonate로 합성된 Poly(3,4-ethylenedioxythiophene)의 전하전달현상에 미치는 유기용매의 영향

  • Park, Chang-Mo (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Tae-Young (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Won-Jung (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Yun-Sang (Department of Materials Science and Engineering, Korea University) ;
  • Suh, Kwang-S (Department of Materials Science and Engineering, Korea University)
  • 박창모 (고려대학교 공과대학 신소재공학과) ;
  • 김태영 (고려대학교 공과대학 신소재공학과) ;
  • 김원중 (고려대학교 공과대학 신소재공학과) ;
  • 김윤상 (고려대학교 공과대학 신소재공학과) ;
  • 서광석 (고려대학교 공과대학 신소재공학과)
  • Published : 2005.07.01

Abstract

The effects of organic solvent on the charge transport behavior of poly (3,4-ethylenedioxythioph one)/p-toluene-sulfonate(PEDOT-OTs) are investigated. The use of different organic solvents during the oxidative chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) with Iron(III) -tosylate can greatly vary the DC conductivity of PEDOT-OTs along with molecular structure and doping concentration. For example, PEDOT-OTs prepared from methanol shows the conductivity of 19.5 S/cm, which is an increase by a factor of $10^8$ compared to PEDOT-OTa prepared from acetone. From the X-ray diffraction (XRD) experiments, it was found that PEDOT-OTs with ketone is amorphous state, while PEDOT-OTs with alcoholic solvent shows the better defined crystalline structure in which the charge transport along and between the PEDOT chains are promoted. Chemical analysis employing X-ray photoelectron spectroscopy (XPS) revealed that the doping concentration of PEDOT-OTs with alcoholic solvent is much higher than that of PEDOT-OTs with ketones. It is proposed that the interactions between the organic solvent and doping anion can cause the variation in doping concentration and, therefore, result in the PEDOT-OTs of different conductivities and chain structures.

Iron(III)p-toluenesulfonate를 개시제로 한 3,4-ethylenedioxyaiophene(EDOT)의 중합과정시 여러 가지 유기용매를 첨가했을 때 poly(3,4-ethylenedioxythiophene)(PEDOT)의 전하이동특성이 어떻게 변하는지에 대해 연구하였다. 첨가한 유기용매의 종류는 MeOH, EtOH등의 알콜류와 Acetone, MEK등의 케톤류였으며, 직류 전기전도도 측정시 280 K에서 전도도는 MeOH를 첨가한 시료가 19.5 S/cm로 가장 높았으며, MEK를 첨가한 시료는 $2.2{\times}10^{-9}$S/cm로 각기 다른 전도도를 나타내었다. 유기용매 첨가에 따른 전기전도도의 변화를 설명하기 위해 X-ray diffraction(XRD)를 통한 PEDOT의 구조적 변화를 관찰하였으며, 알콜류를 첨가했을 경우 결정화도가 증가하는 반면, 케톤류의 유기용매를 첨가했을 경우에는 무정형 구조를 가지는 것을 관찰하였다. 또한 X-ray photoelectron spectoscopyocpy(XPS)를 이용하여 S(2p) 피크를 분석한 결과 케톤류를 첨가한 시료의 경우 다른 시료에 비해 도핑레벨이 매우 낮음을 관찰하였다. 이는 유기용매와 PEDOT의 상대이온인 p-toluenesulfonate와의 상호작용으로 인한 것으로 중합시 유기용매의 첨가에 따라 PEDOT의 도핑효율 및 구조가 변화하고 결과적으로 전기전도도가 변화하는 것을 확인하였다.

Keywords

References

  1. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 12,481 (2000) https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  2. T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Handbook of Conducting Polymers, Marcel Dekker, New York, 1998
  3. M. Leclerc and G. Daoust, Synth. Met., 41-43, 529 (1991)
  4. F. Jonas, G. Heywang, W. Schmidtberg, J. Heinze, and M. Dietrich, U.S.Patent 5035926 (1991)
  5. F. Jonas, W. Krafft, and B. Muys, Macromol. Symp., 100,169 (1995)
  6. F. Jonas and G. Heywang, Electrochim. Acta., 39, 1345 (1994) https://doi.org/10.1016/0013-4686(94)E0057-7
  7. D. M. de Leeuw, P. A. Kraakman, R F. G. Bongaerts, C. M. J. Mutsaers, and D. B. M. Klaassen, Synth. Met, 66,263 (1994) https://doi.org/10.1016/0379-6779(94)90076-0
  8. L. A. A. Pettersson, T. Johansson, F. Carlsson, H. Arwin, and O. Inganas, Synth. Met, 101,198 (1999) https://doi.org/10.1016/S0379-6779(98)01215-6
  9. A. G. MacDiarmid and A. J. Epstein, Synth. Met, 65,103 (1994) https://doi.org/10.1016/0379-6779(94)90171-6
  10. J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, Synth. Met., 126, 311 (2002) https://doi.org/10.1016/S0379-6779(01)00576-8
  11. N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline Materials, Clarendon press, Oxford, 1979
  12. M. Campos and Braz Bello Jr., J. Phys. D: Appl. Phys., 30,1531 (1997) https://doi.org/10.1088/0022-3727/30/10/021
  13. R. Menon, C. O. Yoon, D. Moses, A. J. Heeger, and Y. Cao, Phys. Rev. B, 48,17685 (1993) https://doi.org/10.1103/PhysRevB.48.993
  14. K. E. Aasmundveit, E. J. Samuelsen, O. Inganas, L. A. A. Petterson, T. Johansson, and S. Ferrer, Synth. Met, 113,93 (2000) https://doi.org/10.1016/S0379-6779(00)00181-8
  15. X. Crispin, S. Marciniak, W. Osikowiz, G. Zotti, A. W. Denier Van Der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver, and W. R. Salaneck, J. Polym. Sci. Polym. Phys., 41, 2561 (2003) https://doi.org/10.1002/polb.10659
  16. A. B. Kaiser, Rep. Prog. Phys., 64, 1 (1987)
  17. S. Kivelson and A. J. Heeger, Synth. Met, 17,183 (1987) https://doi.org/10.1016/0379-6779(87)90735-1
  18. G. Zotti, S. Zecchin, G. Schiavan, F. Louwet, L. Groenendaal, X. Crispin, W. Osikowicz, W. Salaneck, and M. Fahlman, Macromolecules, 36, 3337 (2003) https://doi.org/10.1021/ma021715k