• Title/Summary/Keyword: pollutant removal efficiency

Search Result 208, Processing Time 0.027 seconds

Evaluation of Treatment Efficencies of Pollutants in Bongsan Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 봉산 인공습지의 오염물질 정화효율 평가)

  • Choi, Ik-Won;Moon, Sung-Dong;Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1089-1094
    • /
    • 2011
  • To treat non-point source pollution in Juam lake, removal efficiencies of pollutants were investigated in Bongsan constructed wetlands (CWs) at different treatment time, stages and wastewater loads. The constructed wetlands consisted of forebay, $1^{st}$ and $2^{nd}$ wetlands. The concentrations of BOD, SS, T-N, and T-P in inflow were $1.87mg\;L^{-1}$, $1.62mg\;L^{-1}$, $11.47mg\;L^{-1}$, and $4.40mg\;L^{-1}$, respectively. The removal rates of BOD, SS, T-N, and T-P in Bongsan CWs were 26, 18, 16 and 9%, respectively. The removal rates of BOD and T-N were higher than those for SS and T-P. The amounts of pollutant removal in Bongsan CWs were higher in the order of forebay > $1^{st}$ wetland > $2^{nd}$ wetland for BOD, forebay > $2^{nd}$ wetland > $1^{st}$ wetland for SS, $1^{st}$ wetland > forebay > $2^{nd}$ wetland for T-N and $2^{nd}$ wetland > forebay > $1^{st}$ wetland for T-P.

Removal of Volatile Organic Compounds using Candida tropicalis Immobilized on Polymer Gel Media in an Airlift Loop Bioreactor (Candida tropicalis 포괄고정 담체를 적용한 Airlift Loop Bioreactor에서의 복합 휘발성유기화합물 제거)

  • NamGung, Hyeong-Kyu;Ha, Jeong-Hyub;Hwang, Sun-Jin;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.603-610
    • /
    • 2009
  • This research was performed to improve removal efficiency of toluene and methyl ethyl ketone (MEK) using Candida tropicalis, one of the yeast species. An airlift loop bioreactor (ALB) was employed to enhance the capability of mass transfer for toluene and MEK from the gas phase to the liquid, microbial phase. Polymer gel media made from PAC, alginate and PEG was applied for the effective immobilization of the yeast strain on the polymer gel media. The experimental results indicated that the mass transfer coefficient of toluene without polymer gel media was 1.29 $min^{-1}$ at a gas retention time of 15 sec, whereas the KLa value for toluene was increased to 4.07 $min^{-1}$ by adding the media, confirming the enhanced mass transfer of volatile organic compounds between the gas and liquid phases. The removal efficiency of toluene and MEK by using yeast-immobilized polymer gel media in the ALB was greater than 80% at different pollutant loading rates (5, 10, 19 and 37 g/$m^3$/hr for toluene, 4.5, 8.9, 17.8 and 35.1 g/$m^3$/hr for MEK). In addition, an elimination capacity test conducted by changing inlet loading rates stepwise demonstrated that maximum elimination capacities for toluene and MEK were 70.4 and 56.4 g/$m^3$/hr, respectively.

Removal Characteristic of Soluble Cs in Water Using Natural Adsorbent and High Basicity Coagulant Poly Aluminium Chloride (천연광물 흡착제 및 고염기도 PAC를 이용한 용존성 Cs의 처리특성)

  • Kim, Bokseong;Kim, Youngsuk;Chung, Yoonsuhn;Kang, Sungwon;Oh, Daemin;Chae, Hojun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.7
    • /
    • pp.385-390
    • /
    • 2017
  • This study investigated removal characteristic of soluble Cs in water by RPT (Radioactivity pollutant treatment) with coagulation and sedimentation. The RPT conducted with various chemical and natural coagulants to remove the soluble Cs which consisted pre-adsorption, Sedimentation and post-adsorption. Natural absorbent included Illite and zeolite. Especially, Illite divided LPI (Large Particle Illite) and SPI (Small Particle Illite) by grain size. Also, Chemical coagulants included high basicity PAC (poly aluminum chloride). The adsorbent had a plate structure mainly composed of quartz, albite and muscovite. The surface area were $4.201m^2/g$ and $4.227m^2/g$ and the particle sizes were $197.4-840.9{\mu}m$ and $3.28-53.57{\mu}m$, respectively. The adsorption efficiency of the natural Illite was 82.8% for LPI and 85.6% for SPI. The removal efficiency of turbidity, which was an indirect indicator of adsorbent recovery, was 96.4% and 98.3%, respectively.

Treatment Efficiency of Existing Forms of Pollutants in Sewage Treatment Plant by Natural Purification Method (자연정화공법에 의한 하수처리장에서 오염물질의 존재형태별 처리효율)

  • Seo, Dong-Cheol;Lee, Byeong-Ju;Hwang, Seung-Ha;Lee, Hong-Jae;Cho, Ju-Sik;Lee, Sang-Won;Kim, Hong-Chul;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.129-137
    • /
    • 2006
  • A study was conducted to investigate the behavior of pollutant forms at each area in the sewage treatment plant by natural purification method. The sewage treatment plant by natural purification method that consisted of aerobic and anaerobic area was constructed. The efficiency of sewage treatment depending on the operation time, the loading amount of pollutant season variation were investigated. The removal amount of BOD, COD, TOC and SS in the aerobic area was significantly increased as the treatment proceeded. Decreased BOD, COD, TOC, SS, T-N and T-P depending on the loading amount of pollutants in the aerobic and ananerobic area were mostly insoluble BOD (IBOD), insoluble COD (ICOD), soluble TOC (STOC), volatile SS (VSS), dissolved T-N (DTN) and dissolved T-N (DTP) types, respectively. The removal efficiency of BOD, COD, TOC, SS, T-N and T-P in hot season (summer and autumn) were more than that in cold season (spring and winter). The removal efficiencies of BOD, COD, TOC, SS, T-N and T-P of the effluent were about 92, 89, 73, 95, 46 and 84% in all seasons, respectively.

Evaluation of the Volume and Pollutant Reduction in an Infiltration and Filtration Facility with Varying Rainfall Conditions (침투여과시설의 강우계급에 따른 유량 및 비점오염물질 저감 효과 분석)

  • Yu, Gigyung;Choi, Jiyeon;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Urban areas generate large amounts of stormwater and non-point source (NPS) pollutants during rainfall events. These are caused by various land use runoffs, vehicular and human activities and increased impervious cover. The increased runoff and NPS pollutants cause water quality deterioration in the receiving waters and adversely affect the aqua-ecosystem. These environmental impacts could be reduced through the application of low impact development (LID) techniques. In Korea, more than 80% of the total rainfall occurs in summer and most of these were 10 mm or less. Therefore, if the LIDs developed were able to cope with rainfall of 10 mm and below, NPS management could be efficiently conducted. This research was performed to determine the effect of varying amounts of rainfall on the performance capability of an established infiltration and filtration facility (IF facility) that can be applied to Korea's common rainfall ranges. The IF facility area was 1.75% of the catchment area, however the facility treated more than 40% and 60% runoff volume and pollutant reduction respectively for a 10 mm rainfall. Lastly, higher volume and pollutant reduction could be attained when the LID area was at least 2% of the entire catchment.

Change of dry matter and nutrients contents in plant bodies of LID and roadside (도로변 및 LID 시설 내 식생종류별 식물체 내 건물률 및 영양염류 함량 변화)

  • Lee, YooKyung;Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • The application of nature-based solutions, such as low impact development (LID) techniques and green infrastructures, for stormwater management continue to increase in urban areas. Plants are usually utilized in LID facilities to improve their pollutant removal efficiency through phytoremediation. Plants can also reduce maintenance costs and frequency by means of reducing the accumulation of pollutants inside the facility. Plants have long been used in different LID facilities; however, proper plant-selection should be considered since different species tend to exhibit varying pollutant uptake capabilities. This study was conducted to investigate the pollutant uptake capabilities of plants by comparing the dry matter and nutrient contents of different plant species in roadsides, LID facilities, and landscape areas. The dry matter content of the seven herbaceous plants, shrubs, and arboreal trees ranged from 60% to 90%. In terms of nutrient content, the total nitrogen (TN) concentration in the tissues of herbaceous plants continued to increase until the summer season, but gradually decreased in the succeeding periods. TN concentrations in shrubs and trees were observed to be high from early spring up to the late summer seasons. All plant samples collected from the LID facility exhibited high TP content, indicating that the vegetative components of LID systems are efficient in removing phosphorus. Overall, the nutrient content of different plant species was found to be highly influenced by the urban environment which affected the stormwater runoff quality. The results of this study can be beneficial for establishing plant selection criteria for LID facilities.

A study on the Dioxin behavior in the process of representative pyrolysis/gasfication/melting plant (대표적인 열분해가스화 용융시설의 공정별 다이옥신 배출거동에 관한 연구)

  • Shin, Chan-Ki;Shin, Dae-Yun
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.1 s.63
    • /
    • pp.1-16
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and is mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasfication/melting process is presented as a alternative of incineration process. The pyrolysis/gasfication/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, it Is investigated that the behavior of dioxins in three pyrolysis/gasfication/melting plant (S, T, P) of pilot scale. In case of S plant, concentration of dioxins shows high at latter part of cogenerated boiler and stack which are operate on low temperature conditions than a latter parts of pyrolysis and melting furnace which are operate on high temperature condition. Concentration of gas phage dioxins had increased after combusted gas passed cogenerated boiler and this is attributed to react of precursor materials such as chlorobenzene and chlorophenol. Concentration of dioxins in T plant showed lower levels at latter part of cooling equipment which are operate with water spray type on low temperature conditions than a latter parts of gasfied melting furnace which are operate on high temperature condition. Removal efficiency of dioxins at gas treatment equipment was 78.8 %. Concentration of dioxins in P plant was low at latter part of SDA/BF which is operate at low temperature conditions than a latter parts of pyrolysis gasfied chamber which are operate at high temperature condition. Removal efficiency of dioxins of SDA/BF was 85.9 % and therefore, it showed high efficiency at those of stoker type incineration facility. However, concentration of dioxins which emitted at high temperature condition were low in three facilities and satisfied present standard emission level of dioxins. To consider the distribution ratio of dioxins, Particulate phase dioxins at S and P plants showed similar ratio with which shows in current stoker type for middle scale domestic waste incineration facility. It is necessary to continuos monitoring the ratio of distribution of dioxins in T plant in because ratio of gas phage dioxins showed high.

A Performance Evaluation of the Highly Efficient Coagulation System for the Treatment of Overflows from Primary Clarifier in WWTP (강우시 하수처리장 일차침전지 월류수 처리를 위한 고효율응집시스템의 적용성 평가)

  • Gwon, Eun-Mi;Oh, Seok-Jin;Kim, Heung-Seup;Cho, Seung-Ju;Lee, Seung-Chl;Ha, Sung-Ryong;Lim, Chea-Hoan;Park, Ji-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.391-398
    • /
    • 2011
  • This study is to develop highly efficient coagulation system(HECS) that runs treatment with a short retention time to cover the overflow in the rain, which coagulation, mixing and settling are contacted in a single reactor and to estimate the applicability. Setting up 100ton/day-size pilot scale plant, the results of continuous operation in case of runoff, maintaining 20 minute-retention time at optimum chemical injection condition(Alum 100mg/L, Polymer 1.0mg/L) shows the highest removal efficiency(Turbidity 93.1%, TCODcr 80.6%, BOD 81.8%, SS 92.5%, TN 72.3% and T-P 87.3%). It was estimated that the large amount of cost for separate sewage system and the size of area for system instruction can be reduced if the HECS is applied for CSOs treatment because the HECS is so compact and quickly. When we see the results, HECS from this study could be able to treat the pollutant quickly within a short retention time only with coagulant and polymer, which could show high applicability.

Characteristics Evaluation of Non Point Source Treatment Facilities in Construction Site (건설 현장 내 비점오염원 처리 시설의 제거 특성 평가)

  • Choi, Younghoa;Jeong, Seolhwa;Kim, Changryong;Kim, Hyosang;Oh, Jihyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.53-62
    • /
    • 2009
  • This study was conducted to investigate characteristics of the non-point source pollution under construction and evaluate available pollution control methods. Suspended solid loading is high when soil disturbs by rainfall and this phenomenon is much more severe at the initial stage of construction than at the final one. There are three methods available for erosion and sediment control, which are check dam, silt fence, and geotextile. Check dam and silt fence are for control of suspense solids and geotextile is for preventing soil erosion during rainfall. They can be installed as temporary control facilities at construction sites. From the comparison of those methods, it was found that geotextile method was the most efficient for the runoff control of non-point source pollution. Check dam and silt fence can remove suspense solids by pore spaces to some degree, but the removal of pollutants mainly occurs through sedimentation. Because the temporary control facilities have limited removal efficiency of pollutant, they often cause civil claims and contamination of water environment. Hence, using a pressurized filtration system along with temporary control facilities, highly enhanced treatment efficiency was anticipated. In addition, the loading capacity of these techniques depends on filtration velocity and input loading. And their pre-treatments are necessary for efficient operation.

  • PDF

Improvement of Working Surroundings in the Industrial Waste Incinerator (산업폐기물 소각플랜트의 작업환경개선)

  • Shon Byung-Hyun;Lee Gang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.431-439
    • /
    • 2006
  • A lot of particulate matter and an offensive odor are emitted during the operations of an industrial waste incinerator (IWI), especially pre_treatment and waste input processes. These pollutants affect the labor efficiency of an operator. Therefore, in this study. we have studied the improvement of working surroundings in the industrial waste incinerator by designing a new control system. A computational fluid dynamics has been used to find the diffusion flows of air pollutants (mainly particles and odor) to the working surroundings of the waste treatment complexes. The results obtained from the simulation analysis applied to the basic design on the points (and/or site) and types of pollution control devices. When pollutant control devices are constructed, the concentration of each pollutant at site 1 and 2 decreased about 83-97% for toluene, 48-72% for styrene, 75-87% for xylene, and 23-36% for ammonia, respectively. In addition, the PM-10 and TSP were decreased about 87% and 86% at site 3 (lower part of the waste input), 87% and 85% at site 4 (side part of the waste input), respectively. These indicated that the new control system had an excellent performance of particulate matter and odor removal and it could be applied to other waste treatment plant in place of an industrial waste incinerator.

  • PDF