• 제목/요약/키워드: pollutant concentration

검색결과 859건 처리시간 0.021초

인공신경망을 이용한 도로터널 오염물질 농도 예측 (Application of Artificial Neural Network to the Prediction of Pollutant Concentration in Road Tunnels)

  • 이덕준;유용호;김진
    • 터널과지하공간
    • /
    • 제13권6호
    • /
    • pp.434-443
    • /
    • 2003
  • 본 연구에서는 비서형 모델에 적용 가능한 역전파 알고리즘을 이용하여 도로터널에서 발생하는 오염물질을 예측하기 위한 인공신경망을 개발하였다. 도로 터널에서 중요시되는 오염인자는 CO농도와 가시도이므로, 인공신경망의 구성을 각각의 독립적인 네트워크로서 구성하였다. 사용한 입력데이터는 영동고속도로에 위치한 종류식 환기 방식을 채택한 일방향 2차선 도로 터널 2개소에서 실측한 데이터를 사용하였다. 예측치와 실측치를 비교할 때 인공신경망의 학습도는 약 95%의 정확성을 보이는 것으로 나타났다. 분석결과 개발된 인공신경망에 의한 결과는 PIARC 방식에 의한 계산치 보다 약 5배 정도의 정확성을 보였다. 특히 주행속도가 낮을 경우 더 높은 정확도를 나타낼 것으로 기대 되었다.

해륙풍을 고려한 울산지역 대기오염물질농도의 수치모의 (A Numerical Simulation of Air Pollutant Concentration Considering Land and Sea Breeze in Ulsan Area)

  • 이화운;원경미;정우식;오은주;김민선;도우곤
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.933-943
    • /
    • 2002
  • The urban pollution if affected by local environmental, so it is necessary to consider area characteristics such as emission source and meteorological phenomena, in studying urban air pollution. Ulsan is laocated on south-east coast and has many industrial facilities, so many people have concerned about air pollution. This study contain conducting numerical simulation of air pollutant concentration considered land and sea breeze in Ulsan area with the numerical model.

영일만 유입오염부하량과 수질의 시${\cdot}$공간적 변동특성(II) - 유입오염부하량과 수질의 상호거동 - (Spatial and Temporal Variation Characteristics between Water Quality and Pollutant Loads of Yeong-il Bay (II) - Mutual Variation between Inflowing Pollutant Loads and Water Quality -)

  • 윤한삼;이인철;류청로
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.32-38
    • /
    • 2003
  • This study investigates the distribution characteristics and relationship of water quality, and analyzes the spatial and temporal variation and distribution of the pollutant loads at Yeong-il Bay. The results of these analysis, the concentrations of nutrient loads (T-N and T-P), both appeared to be at the maximum value in November, while most small values were taken in May for the T-N, and in August for the T-P. For COD, the maximum concentration was in August, which has much precipitation during the same season, T-N was at the mean, and T-P was at the minimum value. Using the cluster analysis to develop the division of the sea basin by the dendrogram, before and after construction of Pohang New-port, the variation characteristics of water quality of Yeong-il Bay were discussed. The in flowing pollutant loads were transported to the landward by the high-density salinity water volume of the bottom layer therefore, it formed nutrient trap or coastal trapping areas of the pollutant load. By this mechanism, it is clear that the water volume with high-density nutrient exists on both sides of the Pohang New-port. Thus, the sea basins increasing concentration of the pollutant load at Yeong-il Bay are most prevalent at Hyeong-san estuary, the Pohang Old, and New-port. To improve water quality of this sea basin, the reduction of these nutrients loads should be the highest priority.

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

낙동강 상류 유역에서의 유량변동에 따른 수질의 통계학적 분석 (A Stochastic Analysis of the Water Quality with Discharge Variation in Upper Nakdong River Basin)

  • 최현구;한건연;최승용
    • 환경영향평가
    • /
    • 제20권6호
    • /
    • pp.833-843
    • /
    • 2011
  • The purpose of this study is to analysis pollutant loading of upper Nakdong River basin according to the variation of discharge. The correlation between discharge and pollutant concentration and between discharge and pollutant loading were analyzed by statistical method, respectively. Regression equation of pollutant loading and discharge was represented as $L=_aQ^b$ in which L = pollutant loading(kg/day), and b = regression coefficients, and Q = discharge($m^3/day$). The correlation coefficient of study area was in range of 0.8428 to 0.9935. The SS was the highest b value 1.2856~1.7730 among water quality parameters because the pollutant loading of SS was much affected by flow. Additionally, the applicability of the regression equations was verified by comparing predicted results with observed value. The correlation coefficient of verification was in range of 0.8983 to 0.9987 and NSEC was in range of 0.7018 to 0.9960. Therefore the pollutant loading was good correlated with discharge. The main result will be used as basic data for water quality management and design of environment fundamental facilities.

풍속과 풍향이 미세먼지농도에 미치는 영향 (Effect on the PM10 Concentration by Wind Velocity and Wind Direction)

  • 채희정
    • 환경위생공학
    • /
    • 제24권3호
    • /
    • pp.37-54
    • /
    • 2009
  • The study has analyzed impacts and intensity of weather that affect $PM_{10}$ concentration based on PM10 forecast conducted by the city of Seoul in order to identify ways to improve the accuracy of PM10 forecast. Variables that influence $PM_{10}$ concentration include not only velocity and direction of the wind and rainfalls, but also those including secondary particulate matter, which were identified to greatly influence the concentration in complicated manner as well. In addition, same variables were found to have different impacts depending on seasons and conditions of other variables. The study found out that improving accuracy of $PM_{10}$ concentration forecast face some limits as it is greatly influenced by the weather. As an estimation, this study assumed that basic research units and artificially estimated pollutant emissions, study on mechanisms of secondary particulate matter productions, observatory compliment, and enhanced forecaster's expertise are needed for better forecast.

에너지절약 주택과 일반 아파트에서의 실내 화학오염물질 농도 변화 특성 (The Characteristic of the Concentration Transition of Chemical Substances in Energy Saving House and Apartment House)

  • 유복희;박선효
    • 한국주거학회논문집
    • /
    • 제19권1호
    • /
    • pp.49-55
    • /
    • 2008
  • Recently, much attention has been paid to the problem such as sick building syndrome, which caused by the indoor air pollutant. Volatile Organic Compounds $(VOC_s)$ and formaldehyde have been considered as one of the main reason that causes indoor air pollutant. This study is for introducing and designing thermal performance of super energy saving building by conducting $VOC_s$ and formaldehyde concentration in the 3Liter house. The results of the measurement for 10 months showed that $VOC_s$ and formaldehyde decreased until the guideline concentration. It took about 7 months, and it appeared right after new construction. However, their levels were showed higher concentration in comparison with the ordinary residential houses (apartment house). The main difference of between newly built 3Liter house and ordinary apartment is their air changes, which are 0.67/h for 3Liter house and 4.0/h for the apartment.

중금속이 애기장대의 생장과 종자발아에 미치는 영향 (Effects of Heavy Metals on Growth and Seed Germination of Arabidopsis thaliana)

  • 박영숙;박종범
    • 한국환경과학회지
    • /
    • 제11권4호
    • /
    • pp.319-325
    • /
    • 2002
  • This experiment was carried out to investigate the effects of heavy metals (copper, cadmium, lead and chrome) on the growth of plant and seed germination of Arabidopsis thaliana treated with various concentrations of heavy metals. Cadmium and chrome among the 4 heavy metals had no effect on the growth of stem even in the concentration fifty times higher than the official standard concentration of pollutant exhaust notified by the Ministry of Environment. The official standard concentration of cadmium, however, stimulated the growth of stem in general, increasing leaf size and surface area, although it had no effect on the length of stem. But the growth of stem was decreased about 18% in the official standard concentration of pollutant exhaust of lead and copper. There was no growth of root in the concentration of lead and copper ten times higher than the official standard concentration. Cadmium and chrome had no effect on the seed germination, but lead and copper decreased the rate of seed germination. Seeds were not germinated in the concentration of copper ten times higher than the official standard concentration and in the concentration of lead fifty times higher than the official standard concentration. From this research three peculiar results were obtained. Chrome in the soil did not have much effect on the plant growth and seed germination of Arabidopsis thaliana. Cadmium stimulated the stem growth in an optimum concentration. But lead and copper reduced the plant growth and seed germination even in a small concentration, especially copper had the worse effect.

Remediation Groundwater contaminated with Nitrate and Phosphate using Micellar-enhanced ultrafiltration

  • 백기태;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.334-337
    • /
    • 2002
  • The drinking water industry faces a growing number of difficultiesin the treatment of groundwater for drinking water production. Groundwater sources are frequently contaminated with nitrates and phosphates due to usage of chemical fertilizer In this study, feasibility of micellar enhanced ultrafiltation (MEUF) was investigated to remediate groundwater contaminated with nitrate and phosphate. Ultrafiltration membrane was cellulose acetate with molecular weight cut off (MWCO) 10,000 and celtyl pyridinium chloride (CPC) was used to form pollutant-micelle complex with nitrate and phosphate. The results show that nitrate and phosphate rejections are satisfactory. The removal efficiency of nitrate and phosphate show 80% and 84% in single pollutant system, respectively with 3 molar ratio of CPC to pollutants. In the multi-pollutant systems, the removalefficiency increased to 90 % and 89 % for nitrate and phosphate, respectively, The presence of nitrate in the solutions did not affect the removal of phosphate and that of phosphate did not affect the removal of nitrate. The concentration of CPC in the permeate and removal efficiency of CPC was a function of the concentration of CPC in the feed solutions.

  • PDF

격리병실내 급배기구 위치에 따른 오염물 제거효율 비교 (Comparison of pollutant removal efficiency according to the locations of the supply and exhaust)

  • 원안나
    • 도시과학
    • /
    • 제9권2호
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.