• Title/Summary/Keyword: pole position

Search Result 215, Processing Time 0.041 seconds

An analysis of the stars recorded in the Seong-Gyeong 星鏡

  • Jeon, Junhyeok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.47.4-48
    • /
    • 2017
  • In the middle of $19^{th}$ century, the Seong Gyeong 星鏡, which is a Korean historical astronomy book, was published by Nam Byeong-Gil(1820-1869). In this study, identification was conducted by considering the star catalogue recorded in the Yixiang Kaocheng Xubian 儀象考成續編. The Seong Gyeong 星鏡 recorded the information of 1,449 stars, and identified 1,413 stars among 1,449 stars, which is a rate of 97.5%. The positional error (angular distance) of the identified stars is $5.33{\pm}0.34$ arc-min. It was also confirmed that the magnitudes of the recorded stars have correlations with those of modern times. It was determined that the position error of the stars became larger as the magnitude of the stars became dimmer, or as the position of the stars came closer to the pole. Based on these analyses, the Seong Gyeong 星鏡 was confirmed that it is a result of correcting the precession of the selected stars from star catalogue of Yixiang Kaocheng Xubian 儀象考成續編.

  • PDF

Experimental Study on the chuncking Pressure Distribution of Electro-Magnetic Chucks (전자척의 고정압력분포에 관한 실험적 연구)

  • 김청균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 1996
  • This paper deals with the distributions of magnetic flux of an electro-magnetic chuck which is one of the most commonly used chucking attachments in a surface grinding machine. The measured results showed good correspondence with the theoretical results which were previously presented by the same author. The normal and tangential components of the magnetic flux density were measured using the gauss meter. The measured results indicated that the magnetic flux density was periodically changing over the transverse position to the magnetic pole. The normal component of magnetic flux decreases very rapidly for the increased z position.

  • PDF

Design of in-line Six-pole triple-mode narrow-band channel filter using iris optimization method (아이리스 최적화 기법을 이용한 In-line형 6극 삼중모드 협대역 채널여파기의 설계)

  • 정근욱;이재현;염인복;박광량;김재명
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.62-71
    • /
    • 1996
  • In this paper, we design tripel-mode channel filter using iris optimization technique and investigate its response. The cavity diameter is determined to resonate three orthogonal modes coincidently and inter-cavity iris is optimized in which one slot control one TE-TE mode and other TM-TM mode couplings simultaneously. Since the electric/magnectic field is variable due to slot position, the center position of the slot which handle coupling coefficients of two modes should be designe dwith optimizatin technique presented here. The implemented triple-mode filter in this paper saves its mass and volume upto 33% relating to the dual-mode filter, caused by the reduced number of cavities.

  • PDF

Modeling and Analysis of a Pendulum Dancer in Industrial Converting Machines (산업용 컨버팅 머신의 펜듈럼 덴서 모델링 및 해석)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun;Kim, Sang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.482-488
    • /
    • 2009
  • Dancer system is typically used equipment for attenuation of tension disturbances. In industrial converting machines, a composite type of dancer system is applied which is mixture of active and passive dancer. It includes feedback position control loop of roll with pendulum dancer and its characteristics is different from passive and active one. In this paper, a mathematical model of the pendulum dancer was derived including PI position feedback controller and it was analyzed by using a pole-zero map and bode plot under various conditions. It was found out that velocity, length of span and inertia were associated with the performance of regulation. It was suggested that the length of upstream span should be greater than that of the downstream and the inertia should be smaller for improvement of the performance. The results can be used for design guidelines of the industrial dancer system.

A Novel Cogging Torque Reduction Method for Single-Phase Brushless DC Motor

  • Park, Young-Un;Cho, Ju-Hee;Rhyu, Se-Hyun;Kim, Dae-Kyong
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2013
  • Single-phase, brushless DC (BLDC) motors have unequal air-gaps to eliminate the dead-point where the developed torque is zero. Unfortunately, these unequal air-gaps can deteriorate the motor characteristics in the cogging torque. This paper proposes a novel design for a single-phase BLDC motor with an asymmetric notch to solve this problem. In the design method, the asymmetric notches were placed on the stator pole face, which affects the change in permanent magnet shape or the residual flux density of the permanent magnet. Parametric analysis was performed to determine the optimal size and position of the asymmetric notch to reduce the cogging torque. Finite element analysis (FEA) was used to calculate the cogging torque. A more than 28% lower cogging torque compared to the initial model with no notch was achieved.

Swing-Up Control of a Two-Link Pendulum with One Actuator (단일 구동부를 갖는 2축 회전형 진자의 스윙업 제어)

  • Yang, Dong-Hoon;Yoo, Ki-Jeong;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2467-2469
    • /
    • 2001
  • A strategy for the swing-up and stabilization control method for a two-links rotational pendulum according to states of each link of the rotational pendulum is proposed. The proposed controller consists of two modes of control such as divergence mode and stabilization mode. When the controller is in divergence mode, control input is generated using sinusoidal function, which is developed based on resonance period of the pendulum in linear region, to make the second link (pendulum) reach top position. After the controller finishes operation in divergence mode, stabilization control is initiated to keep the pendulum around the top position using pole placement control method. Experimental results are given to show the effectiveness of the proposed method.

  • PDF

The determination of state feedback gains of XPTOS for disk drive servomechanism based on BESSEL filter prototype (XPTOS에 의한 디스크 드라이브 서보메커니즘의 구성시 BESSEL 필터 표준 함수에 근거한 상태피드백이득 결정)

  • Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.980-983
    • /
    • 1996
  • This paper presents the method of determining state feedback gains of XPTOS for disk drive servomechanism based BESSEL filter prototype. A typical disk drive actuator can be modeled as second order dynamics for low frequencies. However, the response at higher frequencies shows resonant behavior which cannot be easily modeled. XPTOS consists of the nonlinear control region and the linear control region. In the linear control region, the poles of a second order nominal model of plant must be properly relocated by pole placement technique to attenuate resonant modes at high frequency and to attain minimum time state transition. It is difficult to select position to satisfy this object because velocity feedback gain is subjected to position feedback gain in XPTOS. Here poles of BESSEL filter prototype are selected to determine state feedback gains of XPTOS. Simulation results for disk drive servomechanism using XPTOS having state feedback gains by the proposed method are presented.

  • PDF

Potential Distribution near Concrete Pole According to the position of Ground Rod (접지봉 설치에 따른 전주 주변의 전위분포)

  • Lee, B.H.;Jung, H.U.;Choi, C.H.;Cho, S.C.;Baek, Y.H.;Lee, K.S.;Ahn, C.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.342-346
    • /
    • 2006
  • This paper describes ground surface potential rises and touch voltage. The more soil resistivity of upper layer is lower, the more ground surface potential rise is increased. Ground surface potential rise is increased as the buried depth of ground rod in lowered. Ground surface potential rises were measured in the test site and compared with results by CDEGS program. Touch voltages according to the separation distance of ground rod were measured in four directions. Touch voltages were remarkably changed by separation distance and contact position.

  • PDF

A Study of Sensorless Driving for The Axial Type Double Rotor Brushless DC Motor (축방향 이중 회전자 브러시리스 직류 전동기의 센서리스 구동에 관한 연구)

  • Won, Jae-Son;Kang, Tae-Sam;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.168-170
    • /
    • 1998
  • In this paper a driving method using the microcomputer in safe driving the axial type double rotor brushless DC motor without shaft position sensor is studied. The rotor position is determined from the back-EMF passed though special filter. Starting technique which uses the motor as a synchronous motor at standstill are explained. The motor speed is controlled by changing the duty cycle of PWM. The test motor has Y-connected three-phase stator and 8-pole axial type double rotor. From the experiments, we got good performences of the proposed control system.

  • PDF

Reinforcement Learning Control using Self-Organizing Map and Multi-layer Feed-Forward Neural Network

  • Lee, Jae-Kang;Kim, Il-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.142-145
    • /
    • 2003
  • Many control applications using Neural Network need a priori information about the objective system. But it is impossible to get exact information about the objective system in real world. To solve this problem, several control methods were proposed. Reinforcement learning control using neural network is one of them. Basically reinforcement learning control doesn't need a priori information of objective system. This method uses reinforcement signal from interaction of objective system and environment and observable states of objective system as input data. But many methods take too much time to apply to real-world. So we focus on faster learning to apply reinforcement learning control to real-world. Two data types are used for reinforcement learning. One is reinforcement signal data. It has only two fixed scalar values that are assigned for each success and fail state. The other is observable state data. There are infinitive states in real-world system. So the number of observable state data is also infinitive. This requires too much learning time for applying to real-world. So we try to reduce the number of observable states by classification of states with Self-Organizing Map. We also use neural dynamic programming for controller design. An inverted pendulum on the cart system is simulated. Failure signal is used for reinforcement signal. The failure signal occurs when the pendulum angle or cart position deviate from the defined control range. The control objective is to maintain the balanced pole and centered cart. And four states that is, position and velocity of cart, angle and angular velocity of pole are used for state signal. Learning controller is composed of serial connection of Self-Organizing Map and two Multi-layer Feed-Forward Neural Networks.

  • PDF