• Title/Summary/Keyword: polarography

Search Result 93, Processing Time 0.021 seconds

Determination of Trace Strontium with o-Cresolphthaleoxon by Electroanalytical method (o-Cresolphthaleoxon을 이용한 스트론튬의 전기화학적 분석)

  • Choi, Won Hyung;Lee, Jin Sik;Kim, Do Hoon;Kim, Jae Soo
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 1993
  • Strontium can not be determined by conventional dc polarography method since it is very difficult to be reduced at the drop mercury electrode(DME) in aqueous solution. However the analytical sensitivity was improved by adsorptive stripping voltammetry in which electro-reduction of ligand in a complex formed between strontium and o-cresolphthaleoxone was performed. Strontium could be determined in range of $5{\sim}30{\mu}g/L$ concentration. This method was affected by coexistent alkali earth metal ions. Consequently ion exchange separation is recommended to analyze strontium in samples.

  • PDF

Determination of Copper, Lead, Cadmium and Zinc in Water by Square Wave Polarography with Dithizone-Chloroform Extraction Method (디티존-클로로포름 抽出, 短形波폴라로그래피에 의한 물중의 구리, 납, 카드뮴 및 아연의 定量)

  • Su-Chan Moon
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.6
    • /
    • pp.428-433
    • /
    • 1975
  • 500 ml of a sample water was extracted with 10 ml of 0.01 % dithizone-$CHCl_3$three times. When $CHCl_3$ layer was back extracted with 10 ml of 0.1 N HCl containing mercuric ion, the free metal ions come into aqueous layer. The aqueous layer was added with 2 ml of 2 N KCl and was washed with 10 ㎖ of $CHCl_3$two times in order to remove the trace dithizone, and then was recorded square wave polarogram. The concentration of copper, lead and cadmium can be determined up to 3 ppb and that of zinc up to 14 ppb with an error of 10 %.

  • PDF

Differential Pulse Polarographic Studies on the Mixed Ligand Complexes of Cadmium-Oxalate-Citrate Systems (카드뮴-Oxalate-Citrate계의 혼합 리간드 착물에 대한 미분펄스폴라로그라피적 연구)

  • Se Chul Sohn;Tae Yoon Eom;Jung Key-Suk
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.596-600
    • /
    • 1989
  • The simple and mixed ligand complexes of cadmium-oxalate-citrate systems have been studied with differential pulse polarography at 25${\circ}$C, in the solution with constant ionic strength, ${\mu}$= 1.0 ($NaNO_3$) and pH 8.0. Using the graphical methods by DeFord-Hume and Schaap-McMasters, the overall stability constants for the mixed ligand complexes, $\beta_{ij}$, were found to be: $log\beta_{11}$ = 4.91, $log\beta_{12}$ = 4.99, and log $log\beta_{21}$ = 5.18, respectively. Various equilibria involved in the mixed system have also been discussed.

  • PDF

Determination of measuring time for decision of heavy metal ion concentration in Square Wave Voltammetry with FPGA (FPGA를 이용한 네모파 전압전류법의 계측시간 분석)

  • Lee, Jaechoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.4
    • /
    • pp.25-31
    • /
    • 2016
  • In this research, to analyze the concentration of heavy metal ions in water, we tried to find the measuring time at which the faradaic electric currents flowing by the pure oxidation-reduction reaction from the pushing up mercury electrode of the stripping scan square wave voltammetry(SV+SWV) methods system becomes larger than the capacitance electric current. In order to do this, a method for analyzing signals using FPGA has been designed and we conducted 120 experiments using it. As a result, when the frequency of the square wave is 40Hz, The valid potential-current signal was measured from 96.6667% to 96.7155% of the end of the pulse of the forward and reverse, and the optimal signal was measured at 96.6667%. In addition, the experiment was carried out 40 times by changing the pulse height of the square wave from 10Mv to 40Mv. As a result, at a size smaller than 40Mv, there is little change in the magnitude of the potential-current, and an invalid signal was generated when it is out of this size.

Synthesis and Electrochemical Characteristics of Lantanium and Neodynium Metal Complexes (란탄늄 및 네오디늄 금속의 착물합성과 전기화학적 특성)

  • Oh, Je Jik
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.83-92
    • /
    • 1993
  • The electrochemical behaviors of lanthanide ion(La and Nd) and lanthanide complexes with 2, 2, 6, 6-tetramethyl-3, 5-heptanedione(THD), sym-hydroxydibenzo-16-crown-5(HD16C5) and sym-dibenzo-16-crown-5-oxyacetic acid(D16C5A) ligands in acton solution have been investigated by the use of cyclic voltammetry and direct current polarography. The peak potential and peak current, their dependency on the concentration, temperature, the reversibility of the eleotrode reactions are described. The reduction of the lanthanide ions and complexes in 0.05 M TEAP proceeded one-electron step in first step and one two-electron step in second step. These reduction step was irreversible and the reduction current was diffusion controlled. Macrovcyclic crown ethers, sym-hydroxydibenzo-16-crown-5(HD16C5) and sym-dibenzo-16-crown-5-oxyacetic acid(D16C5A), were prepared from 1, 5-bis-(2-hydroxyphenoxy)-3-oxapentane with epichlorohydrin. The voltammetric behaviors of Ln(III)-HD16C5 and Ln-D16C5A complexes in aceton solution have been investigated by the voltammetric method. The composition and stability constants of lanthanide complexes were determined.

  • PDF

Electrochemical Behavior and Differential Pulse Polarographic Determination of Rifampicin in the Pharmaceutical Preparations

  • Hahn, Young-Hee;Shin, Sun-Mi
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.100-104
    • /
    • 2001
  • Differential pulse polarographic(DPP) analytical procedure for the rifampicin antibiotic, which can be applied to monitor its synthetic process from the starting antibiotic of rifamycin B or rifamycin SV has been developed based on the electrochemical reduction of an azomethine group. Rifampicin exhibited a cathodic peak due to the azomethine group in the side chain of 3-[(4-methyl-1-piperazinyl)imino]methyl moiety and another cathodic peak due to the carbonyl group in rifamycin SV by DPP. The experimental peak potential shift of an azomethine reduction was -73 mV/pH in the pH range between 3.0 and 7.5, agreeing with involvement of 4 e-and 5 $H^5$ in its reduction. By the cyclic voltammetric(CV) studies, the azomethine and the carbonyl reductions in rifampicin were processed irreversibly on the mercury electrode. The plot of peak currents vs. concentrations of rifampicin ranging $1.0{\times}10^{-7} M~$1.0{\times}10^{-5} M yielded a straight line with a correlation coefficient of 0.9996. The detection limit was $1.0{\times}10^{-8} M with a modulation amplitude of 50 mV DPP has been successfully applied for the determination of rifampicin in the pharmaceutical preparations.

  • PDF

Electrochemical Reduction of Methylene Blue and the Effect of Surfactants and Poly-Electrolytes (Methylene Blue의 전기화학적 환원과 계면활성제 및 고분자 전해질의 영향)

  • Kim, Il-Kwang;Jeong, Seung-Il;Chun, Hyun-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.57-65
    • /
    • 1995
  • The electrochemical reduction of methylene blue (MB) in 1.0${\times}$10-2 M KNO3 aqueous solution was investigated by direct current (DC), differential pulse (DP) polarography, cyclic voltammetry (CV) and controlled potential coulometry (CPC). The electrode reduction of melthylene blue was processed CE reaction mechanism by two electrons transfer at the first reversible wave (- 0.18 volts vs. Ag/AgCl). MB was strongly adsorbed on the stationary mercury electrode and the reduction product of conptrolled potential electrolysis was rapidly auto-oxidized in air to the original methylene blue. Upon the basis of interpretation of cyclic voltammogram with pH change, possible CE electrode reaction mechanism was suggested.

  • PDF

A Polarographic Study of Mixed-Ligand Complex Formation by the Reactions of Histidine and Hydroxide Ion with Pb (Ⅱ), Cd (Ⅱ) and Cu (Ⅱ) (납 카드뮴 및 구리의 Histidine과 수산화이온과의 혼합착물 생성의 폴라로그라프적 연구)

  • Kim, Kyo-Su;Park, Yung-Kyu;Suh, Jong-Duck;Lee, Chul-Heui
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.357-362
    • /
    • 1973
  • The polarographic behaviors of Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ) in histidine solutions were studied at ionic strength $({\mu})$ of 0.1 with the use of $NaClO_4$ as a supporting electrolyte. The formation constants of the mixed-ligand complexes of Pb(Ⅱ), Cd(Ⅱ) and Cu(Ⅱ) were calculated by Schaap's method in the presence of both histidine and hydroxide ion. The results of the electrode reactions in the systems are also discussed.

  • PDF

Mechanistic Investigation of Redox Process of 2-Amino-1-cyclopentene-1-dithiocarboxylate derivatives (2-Amino-1-cyclopentene-1-dithiocarboxylate 유도체들의 전극 반응메카니즘)

  • Kim, Yeong Sin;Kim, U Seong;Sim, Yun Bo;Choe, Seong Rak
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.260-266
    • /
    • 1990
  • The electrochemical behavior of N-methyl-2-amino-l-cyclopentene-l-dithiocarboxylic acid $(N-CH_3 acdc) and 2-amino-l-cyclopentene-l-dithiomethyl ester (S-CH_3 acdc) in DMF have been investigated by the use of polarography, cyclic voltammetry and coulometry. The dimer of N-CH_3 acdc is further oxidized at +0.98 V via 2-electron process to produce free sulfur atom and cyclization product. The ring formation between two dithio group occurs along with the elimination of one sulfur atom. The elimination of sulfur atom occurs via two electron oxidation process at + 0.98 V vs. Ag/AgCl electrode. However, the cyclization does not occur in the S-CH_3$ acdc.

  • PDF

Electrochemical Behaviors of Biliverdin in N,N-Dimethylformamide (N,N-Dimethylformamide 용매 중에서 Biliverdin의 전기화학적 거동)

  • Zun Ung Bae;Heung Lark Lee;Tae Myeong Park
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.730-734
    • /
    • 1993
  • The electrochemical reduction behavior or Biliverdin (BV) in N,N-dimethylformamide solvent was studied by DC polarography, cyclic voltammetry and the controlled potential coulometry. The reduced product was indentified by UV-Vis spectroscopy. In DC polarogram, two reduction waves of BV were founded. The half wave potentials of two reduction waves were -0.71 and -0.91 V vs. Ag/Ag$^+$ respectively. The current type of the 1st reduction wave was diffusion-controlled and the 2nd was diffusion current containing a little kinetic current. The 1st electrochemical reduction process was irreversible and BV reduced to Bilirubin.

  • PDF