• Title/Summary/Keyword: polar front area

Search Result 21, Processing Time 0.025 seconds

Spatial Variation of the Polar Front in relation to the Tsushima Warm Current in the East Sea (동해에서 쓰시마난류의 변동과 관련한 극전선의 공간적 변화)

  • 이충일;조규대;최용규
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.943-948
    • /
    • 2003
  • Variation of the polar front in the East Sea is studied using temperature and dissolved oxygen data obtained from Japan Meteorological Agency from 1972 to 1999. Variation of the polar front in the East Sea has a close relation to the variation of the Tsushima Warm Current (TWC). When the TWC spreads widely in the East Sea, polar front moves northward. The spatial variation of the polar front is greater in the southwestern area of the East Sea and the northern area of Tsugaru Strait where the variation of the TWC's distribution area is greater than those in others of the East Sea. Hence, in the southeastern area of the East Sea, that is, between near Noto peninsula and Tsugaru Strait, the spatial variation of the polar front is not so wide as in the southwestern area because the flow of TWC is stable.

Possible Formation Area of the Japan Sea Proper Water I. Subareas by the Polar Front (동해고유수의 생성가능해역 I. 극전선에 의한 해역구분)

  • 최용규;양성기
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.27-42
    • /
    • 1993
  • Based on the Results of Marine Meteorological and Oceanographical Observations during 1966∼1987 and the Ten-day Marine Report during 1970∼1989 by Japan Meteorological Agency, the possible area where the Japan Sea Proper Water (JSPW) can be formed is investigated by analyzing the distribution of water types in the Japan Sea. The Japan Sea can be divided into three subareas of Northern Cold Water(NCW), Polar Front(PF) and Tsushima Warm Current (TWC) by the Polar Front identified by a 6℃ isothermal line at the sea surface in vinter. Mean position of the Polar Front is approximately parallel to the latitude 39∼40。N. The standard deviation of the Polar Front from the mean position of about 130km width is the smallest in the region between 136。E and 138。E where the Polar Front is very stable, because the branches of the Tsushima Current are converging in this region. However, standard deviations are about 180∼250km near the Korean peninsula and the Tsugaru Strait due to greater variability of warm currents. In the NCW area north of 40∼30。N and west of 138。E, the water types of the sea surface to the loom depth are similar to those of the JSPW. This fact indicates that the surface layer of the NCW area is the possible region of the JSPW formation in winter.

  • PDF

Distribution of Total CO2, Nutrients, Chlorophyll-a in the Scotia Sea During Austral Summer (남극 하계 스코티아해의 총 이산화탄소, 영양염, 엽록소 분포)

  • Kim, Dong-Seon;Shim, Jeong-Hee;Kim, Kyung-Tae;Kang, Young-Chul
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.401-414
    • /
    • 2004
  • Temperature, salinity, alkalinity, pH, nutrient, chlorophyll, and iron were measured within the upper 250m water column around the Antarctic Polar Front in the Scotia Sea from late November to early December 2001. Temperature and salinity showed a rapid change across the Polar Front, and the temperature minimum layer existed only in the southern area of the Polar Front. Total $CO_2$ and nutrient concentrations were relatively high and increased rapidly with water depth in the southern area of the Polar Front, which was resulted from upwelling of the Antarctic deep water containing high concentrations of total $CO_2$ and nutrient. ${\Delta}C:{\Delta}N:{\Delat}P$ ratios measured in the norhem and southern areas of the Polar Front were 75:11.4:1 and 84:12.5:1, respectively, which were lower than the Redfield ratio. ${\Delta}Si:{\Delta}N$ ratio (3.65) measured in the southern area of the Polar Front was two times higher than that (1.95) in the northern area. These two ratios were higher than the ratio (1.0) measured in the temperate and tropical oceans. Chlorophyll concentrations were extremely high in the area of $59^{\circ}{\sim}60^{\circ}S$, which was attributed to favorable environmental conditions for phytoplankton growth in this area, such as sufficient iron, high water column stability, and high silicate concentration.

The Physical Environments and Cochlodinium polykrikoides Bloom in the Sea near Naro-Do

  • Lee, Dong-Kyu;Kang, Yoon-Hyang
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.303-314
    • /
    • 2003
  • The initiation of Cochlodinium polykrikoides blooming in the South Sea of Korea occurs in the sea near Naro-Do in late August. In this paper, the relationships of this annual occurrence with the environmental conditions are presented. In early summer, the winds in the sea near Naro-Do are southwesterly and the upwelling occurs in the near-shore area. The favorable winds to the upwelling are relaxed in August and the downwelling favorable northeasterly winds set in around late August. The change of wind direction causes the onshore transport of warm-and-fresh off-shore water into the sea near Naro-Do and a front between near-shore water and off·shore water is formed. Along the front, downwelling occurs and the environmental conditions for the diatom become unfavorable. When the typhoon and storm bring well-mixed East China Sea water into the sea near Naro-Do in September, the conditions for the dinoflagellates become unfavorable and blooming of C. polykrikoides disappears.

Phytoplankton Distribution in the Eastern Part of the Yellow Sea by the Formation of Tidal Front and Upwelling during Summer (황해 동부 해역에서 하계에 조석전선과 용승에 의한 식물플랑크톤군집 분포)

  • Lee, Young-Ju;Choi, Joong-Ki;Shon, Jae-Kyoung
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.111-123
    • /
    • 2012
  • To understand the phytoplankton community in the eastern part of the Yellow Sea (EYS), in the summer, field survey was conducted at 25 stations in June 2009, and water samples were analyzed using a epifluorescence microscopy, flow cytometry and HPLC method. The EYS could be divided into four areas by a cluster analysis, using phytoplankton group abundances: coastal mixing area, Anma-do area, transition water, and the central Yellow Sea. In the coastal mixing area, water column was well mixed vertically, and phytoplankton was dominated by diatoms, chrysophytes, dinoflagellates and nanoflagellates, showing high abundance ($>10^5\;cells\;l^{-1}$). In Anma-do coastal waters characterized by high dominance of dinoflagellates, high phytoplankton abundance and biomass separated from other coastal mixing area. The southeastern upwelling area was expanded from Jin-do to Heuksan-do, by a tidal mixing and coastal upwelling in the southern area of Manjae-do, and phytoplankton was dominated by benthic diatoms, nanoflagellates and Synechococcus group in this area. Phytoplankton abundance and biomass dominated by pico- and nanophytoplankton were low values in the transition waters and the central Yellow Sea. In the surface of the central Yellow Sea, high dominance of photosynthetic pigments, 19'-hexanoyloxyfucoxanthin and zeaxanthin implies that haptophytes and cyanobacteria could be the dominant group during the summer. These results indicate that the phytoplankton communities in the EYS were significantly affected by the formation of tidal front, thermal stratification, and coastal upwelling showing the differences of physical and chemical characteristics during the summer.

Water Quality Characteristics Along Mid-western Coastal Area of Korea (한국 서해 중부 연안역의 수질환경 특성)

  • Lim, Dhong-Il;Kang, Mi-Ran;Jang, Pung-Guk;Kim, So-Young;Jung, Hoi-Soo;Kang, Yang-Soon;Kang, Young-Shil
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.379-399
    • /
    • 2008
  • Spatial-temporal variations in physiochemical water qualities (temperature, salinity, DO, SPM, POC and nutrients) of surface and bottom waters were investigated along the mid-western coastal area (Taean Peninsula to Gomso Bay) of Korea. Spatial distribution patterns of temperature and salinity were mostly controlled by the physical mixing process of freshwater from Geum River and/or Gyunggi Bay with nearby coastal water. A strong tidal front is formed off Taean Peninsula during spring and summer. Seasonal variations in nutrient concentrations, lower in spring and summer and higher in fall and winter, are primarily regulated by magnitude of phytoplankton occurrence rather than freshwater loadings into the bay. Based on seasonal and spatial variability of physicochemical parameters, water quality of the study area can be divided into four water masses; Gyunggi Bay-influenced Water Mass (GBWM), Geum River-influenced Water Mass (GRWM), Yellow Sea Bottom Cold Water Mass (YSBCWM) and Cheonsu Bay Water Mass (CBWM). Water quality of the GBWM (Taean Peninsula coastal area), which has relatively low salinity and high concentrations of nutrients, is strongly controlled by the Gyunggi Bay coastal water, which is under influence of the Han River freshwater. In this water mass, the mixed layer is always developed by strong tidal mixing. As a result, a tidal front is formed along the offshore boundary of the mixed layer. Such tidal fronts probably play an important role in the distribution of phytoplankton communities, SPM and nutrients. The GRWM, with low salinity and high nutrients, especially during the flood summer season, is closely related to physiochemical properties of the Geum River. During the flood season, nutrient-enriched Geum River water mass extends up to 60 km away from the river mouth, potentially causing serious environmental problems such as eutrophication and unusual and/or noxious algal blooms. Offshore (<$30{\sim}40m$ in water depth) of the study area, YSBCWM coupled with a strong thermocline can be identified in spring-summer periods, exhibiting abundant nutrients in association with low temperature and limited biological activity. During spring and summer, a tidal front is formed in a transition zone between the coastal water mass and bottom cold water mass in the Yellow Sea, resulting in intensified upwelling and thereby supplying abundant nutrients to the GBWM and GRWM. Such cold bottom water mass and tidal front formation seems to play an important role in controlling water quality and further regulating physical ecosystem processes along mid-western Korean coastal area.

Application of the Ventilation Theory to the East Sea

  • Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.8-16
    • /
    • 1997
  • The ventilation theory developed by Luyten, Pedlosky and Stommel (1983) is applied to the East Sea to understand the general circulation pattern of the Intermediate Water, especially the ventilated circulation beneath the Tsushima Warm Current. The original model is slightly modified such that it takes the inflow-outflow of the Tsushima Current into consideration. Results of the model indicate that for sufficiently strong Ekman pumping, the Intermediate Water circulates cyclonically by ventilation. The Intermediate Water subducts beneath the Tsushima Warm Water through the western boundary layer. Off the western boundary layer, it turns northward, outcrops to the north by passing the polar front and continues to flow northward until it finally is absorbed by the northern boundary layer. This result seems to be compatible with some recent observations. Over the ventilated area, the transport of the Tsushima Current is negligible and most transport occurs in the shadow area where the Intermediate layer is motionless indicating that, over the deep motionless layer, the two-layered vertical structure under consideration becomes substantially single-layered.

  • PDF

Eddy Kinetic Energy in the East Sea Estimated from Topex/Poseidon Altimeter Measurements

  • Cho Kwangwoo;Cho Kyu-Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.219-228
    • /
    • 2002
  • Based on the five-year (October 1992 through September 1997) Topex/Poseidon altimeter measurements, we describe the statistical characteristics of the eddy variability in the East Sea in terms of sea surface height anomaly, slope variability, and eddy kinetic energy (EKE). The sea surface height anomalies in the East Sea are produced with standard corrections from Topex/Poseidon measurements. In order to eliminate the high frequency noise in the sea surface height anomaly data, the alongtrack height anomaly data was filtered by about 40 km low-pass Lanczos filter based on Strub et al. (1997) and Kelly et a1. (1998). We find that there exists a distinct spatial contrast of high eddy variability in the south and low eddy energy in the north, bordering the Polar Front. In the northwestern area $(north\;of\;39^{\circ}N\;and\;west\;of\;133^{\circ}E)$ from the Polar Front where the eddies frequently appear, the EKE is also considerabel. The high kinetic energy in the southern East Sea reveals a close connection with the paths of the Tsushima Warm Current, suggesting that the high variability in the south is mainly generated by the baroclinic instability process of the Tsushima Warm Current. This finding is supported by other studies (Fu and Zlontnicki, 1989; Stammer, 1997) wh.ch have shown the strong eddy energy coupled in the major current system. The monthly variation of the EKE in both areas of high and low eddy variability shows a strong seasonality of a high eddy kinetic energy from October to February and a relatively low one from March to September. The sequential pattern of wind stress curl shows resemblance with those of monthly and seasonal EKE and the two sequences have a correlation of 0.82 and 0.67, respectively, providing an evidence that wind stress curl can be the possible forcing for the monthly and seasonal variation of the EKE in the East Sea. The seasonality of the EKE also seems to correlate with the seasonality of the Tsushima Warm Current. There also exists the large spatial and interannual variabilities in the EKE.

Community Structure and Spatial Distribution of Phytoplankton in the Polar Front Region off the East Coast of Korea in Summer (여름철 한국 동해 극전선해역에서의 식물플랑크톤의 군집구조와 분포)

  • PARK Joo-Suck;KANG Chang-Keun;AN Kyeng-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.4
    • /
    • pp.237-247
    • /
    • 1991
  • To characterize the community structure and spatial distribution of phytoplankton, observations on seawater temperature, salinity, nutrients, primary productivity and abundance and species composition of phytoplankton were made in the polar front region and its neighborhood off the east coast of Korea in summer 1990. Among the 96 taxa identified, Rhizosolenia setigera and Thalassionema nitzschioides were the most dominant species. The assemblage at the surface and 50 m depth was quite different in the northern inshore part of the study area but similar in the southern and offshore part. Principal component analysis by the species abundance showed that the phytoplankton consisted of the communities representing the surface of the northern inshore part with the neritic-warm dinoflagellates, the Northern Korean Cold Water with the cold water diatoms and the southern and offshore part, which seems to represent the Eastern Korean Warm Water, with the warm water diatoms. At the frontal region, diatoms were mixed with warm and cold water species. Primary productivity and phytoplankton standing crops were higher at the front than the neighboring waters. Nutrients were markedly high at the Northern Korean Cold Water. Horizontal advection of the Northern Korean Cold Water accompanied by nutrient supply seems to contribute to the high phytoplankton biomass at the front.

  • PDF

Distribution of Water Masses and Characteristics of Temperature Inversion in the Western Seas of Jeju Island in Spring (봄철 제주도 서부해역의 수괴 분포와 수온역전 특징)

  • Kang, So-Young;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.44 no.3
    • /
    • pp.191-207
    • /
    • 2022
  • Using the results of CTD casts made in Spring from 2017 to 2021, in this study we investigated the water mass distribution and occurrence of temperature inversion in the western seas of Jeju Island in spring. The distribution of water masses was characterized by cold and fresh water in the northwest and warm and saline water in the southeast, forming a strong thermohaline front running in the southwest-to-northeast direction. Strong temperature inversion mainly occurred in the frontal boundary when the cold water intrudes beneath the warm water at depths of 30-50 m. Analysis of the mixing ratio demonstrated that Jeju Warm Water is dominantly distributed in the western seas of Jeju Island, but its ratio can be modified depending on the southward extension of Yellow Sea Cold Water (YSCW). Results of in situ measurement showed that in 2020, the YSCW largely expanded to the western seas of Jeju Island, occupying approximately 40 % of the mixing ratio. Due to the expansion of YSCW, a strong thermohaline front was formed in the study area, thereby causing thick and strong temperature inversion. On the other hand, in 2018 the mixing ratio of YSCW was minimum (~18%) during the study period of 2017-2021, and thus a relatively weak frontal boundary was formed, without the occurrence of temperature inversion. The observational results also suggest that the interannual changes of water mass distribution and the associated temperature inversion in the western seas of Jeju Island are closely related with wind-driven Yellow Sea circulation in spring, which is the summer monsoon transition period.