• Title/Summary/Keyword: point-unit data

Search Result 404, Processing Time 0.027 seconds

Estimation of Pollutants Loads using Unit Load Method in Hong-Bo Watershed (원단위법을 이용한 홍보유역의 오염부하량 산정)

  • Kim, Sun-Joo;Lee, Suk-Ho;Heo, Bae-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.492-496
    • /
    • 2001
  • The purpose of this study is to estimation of pollutants loads using unit load method in Hong-bo watershed. In general, because river water quality management have been conducted with point source pollutant in our country, pollutants caused by precipitation have not been managed well so far. Especially the pollutants tends to concentrate in the reservoir of reclaimed land. Therefore, the reservoir of reclaimed land is need to continuous monitoring and update of an accurate data. also, It is need to improvement of environmental pollution. There are divide into nine sub-catchments and made an estimate of pollutants loads using unit load method in Hong-bo basin. The sample of data was during the 10 years.

  • PDF

Development of a Delirium Occurrence Screening Model for Patients in Medical Intensive Care Units (내과계 중환자 섬망발생 선별모형 개발)

  • Lee, Hyun Sim;Kim, So Sun
    • Journal of Korean Clinical Nursing Research
    • /
    • v.19 no.3
    • /
    • pp.357-368
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate risk factors related to delirium and to develop screening model on delirium occurrence in MICU (Medical Intensive Care Unit) patients. Methods: For developing a preliminary tool for delirium, the data of 166 patients were collected and analyzed. In order to estimate the accuracy and discriminating power for the developed screening model, 98 patients were enrolled. The data used in this study were collected by EMR (Electronic Medical Record) review from January to September in 2012. The collected data were analyzed using SPSS/PC Win 18.0 program. Results: Screening model on delirium in MICU patients was developed using the results of logistic regression. The total score of screening model was 24 point and measuring point was 10 point. When the measuring point is over 10 point, it means that the risk of delirium occurrence is high. The discriminating power and the validity of screening model showed AUC .908 (p <.001) and .935 (p <.001) respectively. This result showed that the screening model on delirium which developed in this study was an appropriate model for screening the delirium risk group in MICU. The sensitivity of the screening model was 83%, specificity 89% and accuracy 84%. Conclusion: The developed screening model on delirium occurrence in MICU should be combined with EMR for screening and preventing delirium in a high risk group.

The comparison of accuracy on three-unit fixed dental prosthesis made with CAD/CAM milling machines (치과 캐드캠 밀링장비에 따른 3본브릿지의 정확도 비교)

  • Bae, So-Yeon;Park, Jin-Young;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Myung-Bae;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • Purpose: The purpose of this study was to compare the accuracy of the maxillary three-unit fixed dental prosthesis (FDPs) made using two CAD/CAM milling machines : DCM Group(Dentaim CAD/CAM milling machine), WCM Group(Wieland CAD/CAM milling machine). Methods: Each of 10 duplicate models was scanned by blue light scanner(Identica, Medit, Korea), and the three-unit FDPs (STL file) was designed using DelcamCAD. A total of 20 three-unit FDPs was fabricated, comprising 2 groups of 10 specimens each (shrinkage ratio is 1:1). The first three-unit FDPs STL file was used as a CAD reference model (CRM). Obtained STL files by scanning the inner surface of three-unit FDPs were convened into the point clouds-ASC II files. Discrepancies between the point clouds and CRM were measured by superimposition software. Statistical methods to analyze the data were used non-parametric method. The mean (SD) values were compared by a Mann-Whitney U-test. Type one error rate was set at 0.05. Results: WCM group had small discrepancies with $2.17{\mu}m$ of mean value compared to $4.44{\mu}m$ in DCM group. The accuracy values between the two groups showed a sratistically significant difference (Table 2, p<.05). Conclusion: The accuracy of the three-unit fixed dental prosthesis(FDPs) made of two CAD/CAM milling machines were statistically different. Accuracy with which the prosthesis made of WCM group was superior.

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF

Cause Analysis and Improvement of Signal Interference in Byteflight Data Bus

  • Kwon, Jung-Hyuk;Tak, Su-Pyeong;Kwon, Ik-Hyun;Lee, Wang-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.50-58
    • /
    • 2021
  • Byteflight is developed based on RS-485 communication (an international standard), and it can be used as a data bus during the operation of an integrated avionics system in the latest aircraft. Therefore, the integrated avionics system can perform an effective and safe flight mission only when the accurate and seamless display of flight information, communication, and accurate functions of navigation are implemented. In this study, cause analysis and failure investigation were performed on screen abnormalities and communication interruptions due to signal interference in the Byteflight data bus of the integrated avionics system during aircraft operation. To improve signal interference between avionics units, the branch point and wiring path of the Byteflight data bus were changed, and the verification result of the improved method was also described.

Simulation of Benzene-Toluene-Xylene Plant (BTX제조공정의 모사연구)

  • 정해동
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.121-130
    • /
    • 1995
  • This paper deals with modeling and simulation of an industrial benzene-toluene-xylene plant. Because the fractionation unit of benzene-toluene-xylene plant has a narrow range of boiling point and doesn't have any sidecut and side reboiler, we employed boiling point estimation method in the modeling and simulation of the plant. Soave-Redlich-Kwong equation was used in the computation of thermodynamical properties. We solved resulting nonlinear equations by using Newton-Raphson method which is known to show fast convergence. Results of simulation showed good agreement with actual plant operation data.

  • PDF

Research on the Evaluation of Impaired Waterbody using the Flowrate Group at TMDL Unit Watershed in Nakdong River Basin (수질오염총량관리 단위유역 유량그룹별 수체 손상 분석)

  • Hwang, Ha-Sun;Kim, Sang-Soo;Kim, Jin-Lee;Park, Bae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.933-942
    • /
    • 2012
  • The purpose of this study is to evaluate the degree of waterbody impairment according to the flow conditions and present to the appropriate water quality improvement alternatives using observed water quality and flow for Total Maximum Daily Load (TMDL) implementation at 39 unit watersheds the nakdong river basin. Observed water quality data for 7 years are divided into five cumulative flow frequency group and comparing the each observed water quality data and TMDL Target water quality (TWQ) the last evaluate the water quality is impaired group. We found that the cumulative flow frequency group-specific the average excess rate of V group was the highest (32.86%), followed by the IV group (26.04%), group III (23.36%), II group (22.67%), I group (20.70%), the degree of impaired waterbody tended to be inversely proportional to the flow rate. Resulted from cumulative flow frequency group of impaired water quality assessment, 13 unit watersheds are impaired from a group IV and group V affected by point sources. Therefore, improvement of sewage discharge and the initial composition of the riparian buffer zone are needed. Nakbon F, Namkang D and Namkang E within 13 unit watersheds are impaired from group II and III affected by non-point sources. Therefore, application of Best Management Practices (BMPs) is needed for these watersheds. Evaluation of impaired waterbody using Cumulative flow frequency group is able to determine the extent of the judgment to TWQ exceeded by the flow conditions and helps proper setting Standard flow and planning pollutant reduction for TMDL.

Emotional Communication on Interactive Typography System

  • Lim, Sooyeon
    • International Journal of Contents
    • /
    • v.14 no.2
    • /
    • pp.41-44
    • /
    • 2018
  • In this paper, we propose a novel method for developing expressive typography authoring tools with personal emotions. Our goal is to implement an interactive typography system that does not rely on any particular language and provides an easy, natural user interface and allows for immediate interaction. For this purpose, we converted the text data entered by a user to image data. The image data was then used for interaction with the user. The data was synchronized with the user's skeleton information obtained from the depth camera. We decomposed the characters using the formality of language to provide a typographical movement that responds more dynamically to the user's motion. Thus, this system provides interaction as a unit of characters rather than as a whole character, allowing the user to have emotional and aesthetic emotional immersion into his or her creation.

A Study on the Estimation Methods of Nonpoint Pollutant Unit Load - Focus on Nonpoint Pollutant Unit Load in Paddy Field - (비점오염 발생 원단위 산정방법에 대한 고찰 - 논 비점오염 원단위를 중심으로 -)

  • Choi, DongHo;Choi, Soon-Kun;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung Chang;Yeob, So-Jin;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In order to preserve water environment, Total Maximum Daily Load(TMDL) is used to manage the total amount of pollutant from various sources, and the annual average load of source is calculated by the unit load method. Determination of the unit load requires reliable data accumulation and analysis based on a reasonable estimation method. In this study, we propose a revised unit load estimation method by analyzing the unit load calculation procedure of National Institute of Environment Research(NIER) method. Both methods were tested using observed runoff ratio and water quality data of rice paddy fields. The estimated values with the respective NIER and revised NIER methods were highly correlated each other. However, the Event Mean Concentration(EMC) and the runoff ratio considered in the NIER method appeared to be influenced by rainfall classes, and the difference in unit load increases as the runoff and EMC increase. The error can be further increased when the EMC and runoff ratio are changed according to changes in rainfall patterns by climate change and change of agricultural activities. Therefore, it is recommended to calculate unit load by applying the revised NIER method reflecting the non point pollution runoff characteristics for different rainfall classes.

Floating Point Converter Design Supporting Double/Single Precision of IEEE754 (IEEE754 단정도 배정도를 지원하는 부동 소수점 변환기 설계)

  • Park, Sang-Su;Kim, Hyun-Pil;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.72-81
    • /
    • 2011
  • In this paper, we proposed and designed a novel floating point converter which supports single and double precisions of IEEE754 standard. The proposed convertor supports conversions between floating point number single/double precision and signed fixed point number(32bits/64bits) as well as conversions between signed integer(32bits/64bits) and floating point number single/double precision and conversions between floating point number single and double precisions. We defined a new internal format to convert various input types into one type so that overflow checking could be conducted easily according to range of output types. The internal format is similar to the extended format of floating point double precision defined in IEEE754 2008 standard. This standard specifies that minimum exponent bit-width of the extended format of floating point double precision is 15bits, but 11bits are enough to implement the proposed converting unit. Also, we optimized rounding stage of the convertor unit so that we could make it possible to operate rounding and represent correct negative numbers using an incrementer instead an adder. We designed single cycle data path and 5 cycles data path. After describing the HDL model for two data paths of the convertor, we synthesized them with TSMC 180nm technology library using Synopsys design compiler. Cell area of synthesis result occupies 12,886 gates(2 input NAND gate), and maximum operating frequency is 411MHz.