• Title/Summary/Keyword: point source model

Search Result 587, Processing Time 0.032 seconds

The Study on the Comparison of the ISCST3 Model and Receptor Model by Dispersion Tracing of Particulate Matter from Large Scale Pollution Sources (대단위배출원에서 기인한 입자상오염물질의 확산ㆍ추적을 통한 ISCST3모델과 수용모델의 비교연구)

  • 전상기;이성철;박경선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.789-803
    • /
    • 2003
  • The purpose of this study is to compare the usefulness between Gaussian dispersion model and receptor model with the experimental result of the dispersion tracing of the particulate pollutants from Taean coal-fired power plants. For this purpose, the component analysis of the collected PM 10 samples was performed. In order to trace the pollution sources, factor analysis was done with the result of the component analysis. As a result of the correlativity analysis of the fifteen power plants' profiles offered by US EPA, the correlativity of No.11202 source profile showed highest rate up to 84.5%. Thus it was adopted as proper one and the contribution rate by each pollution source was calculated by Chemical Mass Balance (CMB)-8 model. The contribution rate, which was the effect rate of the power plants on each measuring point, were calculated with a range of 24∼52% and the standard error was below 0.9 $\mu\textrm{g}$/㎥. This indicates the selection of the source profile was appropriate. Also, the concentrations of each point were calculated by the ISCST3 which is suggested by US EPA as one of the regulatory Gaussian dispersion model. The calculation result showed that the predicted concentration was 50∼58 $\mu\textrm{g}$/㎥, comparing with the measured result of 9∼65 $\mu\textrm{g}$/㎥. It was found that the concentration calculated by ISCST3 was underpredicted. It was thought that the receptor model was more favorable than the Gaussian dispersion model in estimating the effect of the particulate matter on a certain receptive point.

Analysis of Water Quality on Distributed Watershed using Topographic Data (공간정보를 이용한 분포형 유역 수질 모의)

  • Ryu, Byong-Ro;Jung, Seung-Kwon;Jun, Kye-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.897-913
    • /
    • 2004
  • There has been continuous efforts to manage the water resources for the required water quality criterion at river channel in Korea. However, we could not obtain the partial improvement only for the point source pollutant such as, wastewater from urban and industrial site through the water quality management. Therefore, it is strongly needed that the Best Management Practice(BMP) throughout the river basin for water quality management including non-point source pollutant loads. This problem should be resolved by recognizing the non-point source pollutant loads from upstream river basin to the outlet depends on the land use and soil type characteristic of the river basin using the computer simulation by distributed parameter model based on the detailed investigation and the application of Geographic Information System(GIS). Used in this study, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) model is a tool suitable for long term evaluation of the effects of BMPs and can be used for un gauged watershed simulation of runoff and sediment yield. Now applications of model are in progress. So we just describe the limited result. However If well have done modeling and have investigated of propriety of model, well achieve our final goal of this study.

Analysis of Pollutants Discharge due to the Change of Impervious Land in Urban Area Using Watershed Model (유역모형을 이용한 도시지역의 불투수면 변화에 따른 오염물질 유출 해석)

  • Gong, Seok Ho;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • The purpose of this study is the evaluation of the impact of increase in impervious areas due to urbanization on the pollutant discharge using the HSPF model at Musim watershed. Model calibration and validation were performed based on the observed data 2015 and 2014, all simulation items have been successfully simulated such as flow, BOD, and TP. The land cover map used in the model reflected on the land use status of the Musim watershed in 2015 and the application of the development areas and locations. As a result of simulation, during rainfall daily pollutant load with the increased impervious land increased more than that before the development. However, the pollutant load decreased during the non-rainfall time. Annual pollutant load in rainfall time was significantly higher than that in non-rainfall time, BOD and TP increased. The simulation of non-point source pollutant load was applied under two assumptions, such as the increased area of impervious land and the non-change number of point source load before and after development. As the result of a simulation, the non-point source pollutant load after development was bigger than those before development. It was necessary to take measures to control non-point source pollution at the consideration status of development.

Spectral Features of Seismic Wave Propagation from Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 지진파 전달특성 평가)

  • Yun, Kwan-Hee;Park, Dong-Hee;Chang, Chung-Joong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.81-86
    • /
    • 2007
  • Spectral features of the seismic wave propagation from Odaesan Earthquake were evaluated based on the commonly treated random error between the observed data and the prediction values by the stochastic point-source ground-motion spectral model regarding the source, path and site effects. Radiation pattern of the error according to azimuth angle was found to be similar to the theoretical estimate. It was also observed that the spatial distribution of the errors was correlated with the geological map and the Q0 map which are indicatives of seismic boundaries.

  • PDF

Point-level deep learning approach for 3D acoustic source localization

  • Lee, Soo Young;Chang, Jiho;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.777-783
    • /
    • 2022
  • Even though several deep learning-based methods have been applied in the field of acoustic source localization, the previous works have only been conducted using the two-dimensional representation of the beamforming maps, particularly with the planar array system. While the acoustic sources are more required to be localized in a spherical microphone array system considering that we live and hear in the 3D world, the conventional 2D equirectangular map of the spherical beamforming map is highly vulnerable to the distortion that occurs when the 3D map is projected to the 2D space. In this study, a 3D deep learning approach is proposed to fulfill accurate source localization via distortion-free 3D representation. A target function is first proposed to obtain 3D source distribution maps that can represent multiple sources' positional and strength information. While the proposed target map expands the source localization task into a point-wise prediction task, a PointNet-based deep neural network is developed to precisely estimate the multiple sources' positions and strength information. While the proposed model's localization performance is evaluated, it is shown that the proposed method can achieve improved localization results from both quantitative and qualitative perspectives.

Water Quality Management of Kwangyang Bay by Point Pollution Source Control (점원 오염부하 제어에 의한 광양만의 수질관리)

  • Lee Dae-In;Park Chung-Kil;Cho Hyeon-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.28-39
    • /
    • 2001
  • The eco-hydrodynamic model was used to simulation water quality of Kwangyang Bay according to the environmental variation for appropriate water quality management. The mean concentration of COD was 3.3㎎/L, this exceeded the third class of water quality criteria. Waste water discharging loads showed approximately 90% of total pollutant loads. For satisfaction to below 10㎍/L of Chl. a and 2㎎/L of COD, above 35% reduction of present pollutant loads of point sources are needed.

  • PDF

Assessment of Water Quality Characteristics in the Middle and Upper Watershed of the Geumho River Using Multivariate Statistical Analysis and Watershed Environmental Model (다변량통계분석 및 유역환경모델을 이용한 금호강 중·상류 유역의 수질특성평가)

  • Seo, Youngmin;Kwon, Kooho;Choi, Yun Young;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.520-530
    • /
    • 2021
  • Multivariate statistical analysis and an environmental hydrological model were applied for investigating the causes of water pollution and providing best management practices for water quality improvement in urban and agricultural watersheds. Principal component analysis (PCA) and cluster analysis (CA) for water quality time series data show that chemical oxygen demand (COD), total organic carbon (TOC), suspended solids (SS) and total phosphorus (T-P) are classified as non-point source pollutants that are highly correlated with river discharge. Total nitrogen (T-N), which has no correlation with river discharge and inverse relationship with water temperature, behaves like a point source with slow and consistent release. Biochemical oxygen demand (BOD) shows intermediate characteristics between point and non-point source pollutants. The results of the PCA and CA for the spatial water quality data indicate that the cluster 1 of the watersheds was characterized as upstream watersheds with good water quality and high proportion of forest. The cluster 3 shows however indicates the most polluted watersheds with substantial discharge of BOD and nutrients from urban sewage, agricultural and industrial activities. The cluster 2 shows intermediate characteristics between the clusters 1 and 3. The results of hydrological simulation program-Fortran (HSPF) model simulation indicated that the seasonal patterns of BOD, T-N and T-P are affected substantially by agricultural and livestock farming activities, untreated wastewater, and environmental flow. The spatial analysis on the model results indicates that the highly-populated watersheds are the prior contributors to the water quality degradation of the river.

AOA Estimation of Angle-Perturbed Sources for Wireless Communications (무선통신에서 각 처짐 신호 도래각 추정)

  • Kim, Suk-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.769-774
    • /
    • 2005
  • If the angle of arrival (AOA) of a source is perturbed due to some reasons in a statistical way as in the environment of wireless mobile communications, a new model appropriate for such environment should be used instead of the point source model. In this paper, an angel-perturbed source model is proposed and an estimation method based on the eigen-decomposition tecklique is investigated under the model. The asymptotic distribution of the estimation errors is obtained to observe the statistical properties.

Simultaneous neural machine translation with a reinforced attention mechanism

  • Lee, YoHan;Shin, JongHun;Kim, YoungKil
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.775-786
    • /
    • 2021
  • To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention-based neural machine translation (NMT) models cannot produce translations with adequate latency in online scenarios because they wait until a source sentence is completed to compute alignment between the source and target tokens. To address this issue, we propose a reinforced learning (RL)-based attention mechanism, the reinforced attention mechanism, which allows a neural translation model to jointly train the stopping criterion and a partial translation model. The proposed attention mechanism comprises two modules, one to ensure translation quality and the other to address latency. Different from previous RL-based simultaneous translation systems, which learn the stopping criterion from a fixed NMT model, the modules can be trained jointly with a novel reward function. In our experiments, the proposed model has better translation quality and comparable latency compared to previous models.

HSPF Modeling for Identifying Runoff Reduction Effect of Nonpoint Source Pollution by Rice Straw Mulching on Upland Crops (볏짚 피복에 의한 밭 비점원오염 저감효과 분석을 위한 HSPF 모델링)

  • Jung, Chung-Gil;Park, Jong-Yoon;Lee, Hyung-Jin;Choi, Joong-Dae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • This study is to assess the reduction of non-point source pollution loads for rice straw surface covering of upland crop cultivation at a watershed scale. For Byulmi-cheon watershed ($1.21km^2$) located in the upstream of Gyeongancheon, the HSPF (Hydrological Simulation Program-Fortran), a physically based distributed hydrological model was applied. Before evaluation, the model was calibrated and validated using 9 rainfall events. The Nash-Sutcliffe model efficiency (NSE) for streamflow was 0.62~0.78 and the NSE for water quality (Sediment, T-N, and T-P) were 0.68, 0.60, and 0.58 respectively. From the field experiment of 16 rainfall events, the rice straw covering reduced surface runoff average 10 % compared to normal surface condition. By handling infiltration parameter (INFILT) in the model, the value of 16.0 mm/hr was found to reduce about 10 % reduction of surface runoff. For this condition, the reduction effect of Sediment, T-N, and T-P loads were 87.2, 28.5, and 85.1 % respectively. The rice straw surface covering was effective for removing surface runoff dependent loads such as Sediment and T-P.