• Title/Summary/Keyword: point of impact

Search Result 1,729, Processing Time 0.026 seconds

The effection of alloying elements on welding characteristics of stainless steel (스테인리스강의 용접 특성에 미치는 합금원소의 영향)

  • 정호신;배동수;엄동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Stainless steel are widely applicable in various engineering fields for its exellent corrosion and impact ressistance. Austenitic weld metal has some ferrite for preventing solidification cracking by ASME specification. Several family of austenic stainless steel contains varying ferrite contents. But ferrite in austenic stainless steels is adversely affect weld metal toughness and since fully austenic grades are known to have good toughness. Austenic stainless steel has various alloying addition for improving corrosion resistance, impact toughness and solidification crack resistance. The effect of various alloying elements are not found to be clear in present. From this view of point, this study tried to establish the criteria of alloy design for austenic stainless steel by controlling primary solidification mode and clarifying the effect of several alloying elements.

  • PDF

A Comparison Study on the Street Canyon Wind and Prevailing Wind Characteristics at Skyscraper Area in Winter (초고층건물 주변 겨울철 탁월풍과 도로협곡풍 특성에 관한 비교 연구)

  • Kim, Jae-Cheol;Lee, Kyoo-Seock
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • To investigate the building wind characteristics of skyscraper nearby areas, two points were selected and the wind speed and the wind direction data were measured using 2-D ultrasonic anemometer and propeller type wind monitor during the winter time. The study site is Dohgok-dong, Seoul. After measurement, wind data whose speed is equal to or more than Beaufort level five were selected, classified and analyzed in terms of direction, velocity level and hourly difference. The prevailing wind point is higher than street canyon in terms of intensity and frequency. The main direction is also different. This study aims to figure out the phenomena of building wind impact and also to provide essential basic data for establishing proper guidelines in building wind impact assessment for skyscrapers in Korea.

Impact of Urinary Incontinence on Daily Life after Stroke (뇌졸중 후 요실금이 일상생활에 미치는 영향)

  • Song, Mi-Soon;Ryu, Se-Ang;Kim, Myoung-Suk
    • Korean Journal of Adult Nursing
    • /
    • v.14 no.1
    • /
    • pp.15-25
    • /
    • 2002
  • Purpose: This study was performed to identify the prevalence and type of urinary incontinence (UI) after a stroke, to find the differences in urinary symptoms according to continence or incontinence, and to find the degree of impact of UI on daily life. Method: For data collection, we had a structured interview with a questionnaire. The subjects were 239 post stroke patients. Results: Among the subjects(mean age: $65{\pm}10$), 66.1 percent had an infarction, and 25.5 percent had a hemorrhage. And 26.4 percent of subjects were within 2 weeks and 28.9 percent from 1 year to 5 years since their episodes of a stroke. Forty five point six percent of subjects had various types of UI: urge 25.7 percent, stress 14.7 percent, functional 20.2 percent, and mixed 39.4 percent. There were significant differences in frequency, nocturia, decreased stream, and incomplete emptying between the incontinent and continent groups. Subjects reported UI influenced various aspect of daily life, 54.1 percent as cause of distress, 53.2 percent on overall quality of life, and 40.4 percent on sleep. The Mixed UI, including urge UI, had higher impact on daily life than others. Conclusion: There was a high prevalence of UI, mixed, urge, and functional type as most prevalent, and it had a strong impact on daily life of post stroke patients.

  • PDF

The Impact of Mindfulness on IT Continuance Usage : Focused on Smartwatch Continuance Usage (마음챙김이 정보기술의 지속이용에 미치는 영향 : 스마트워치의 지속이용 중심으로)

  • Kim, Hyun Mo;Pang, Ying Ying
    • Journal of Information Technology Services
    • /
    • v.18 no.5
    • /
    • pp.133-153
    • /
    • 2019
  • The application of mindfulness is increasing in corporation for business innovation. However, the influence of mindfulness has not been confirmed for employee in detail. Mindfulness is the awareness that arises from paying attention in the present. We often experience uncertainty abounds about what the information technology is, how well it works in the process of using information technology. According to the definition of mindfulness, mindfulness can deepen employee's thoughts and understanding of information technology and will provide a clue to the solution of the issue. This study focusses on impact of mindfulness on IT usage behavior, particularly on IT continuance usage. Research question of this study is whether mindfulness impact perceived factors related to IT continuance usage. The study of relationship between IT and mindfulness will have meaningful results because both IT and Mindfulness are aimed at corporate innovation. Based on most recent theory in IT continuance usage, called by Decomposed Expectation-Disconfirmation Model, we established hypotheses and examined the impact of mindfulness on perceived factors in process of IT continuance usage. For empirical analysis, we collected 303 employee samples and conducted Structural Equation Modeling for path analysis. We showed that mindfulness has a positive impact on perceived usefulness, usability and usefulness confirmation, usability confirmation. We also confirmed that antecedent of satisfaction is perceived usefulness, perceived usability and usefulness confirmation, usability confirmation, and satisfaction is the cause of IT continuance usage. We suggested academic and practical implication based on empirical analysis results. In academic perspective, we found the role of mindfulness in process of IT continuance usage. From practical point of view, we suggest to use of mindfulness program for IT continuance usage in corporation.

Impact of Complex Hemodynamics to the Management of ArterioVenous(AV) Fistula (동정맥루의 복합성 혈류학 소견이 그 관리에 미치는 영향)

  • Lee Byung-Boons
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.9-10
    • /
    • 2002
  • Human circulatory system between heart and tissue is not directly connected in normal condition but mandatory to go through the capillary system in order to fulfill its physiologic aim to deliver oxygen and nutrients, etc. to the tissue and retrieve used blood together with waste products from the tissue properly. When abnormal connection between arterial and venous system (AV fistula), these two circulatory systems respond differently to the hemodynamic impact of this abnormal connection between high pressure (artery) and low pressure (vein) system. Depending upon the location and/or degree (e.g. size and flow) of fistulous condition, each circulatory system exerts different compensatory hemodynamic response to this newly developed abnormal inter-relationship between two systems in order to minimize its hemodynamic impact to own system of different hemodynamic characteristics. Pump action of the heart can assist the failing arterial system directly to maintain arterial circulation against newly established low peripheral resistance by the AV fistula during the compensation period, while it affects venous system in negative way with increased venous loading. However, the negative impact of increased heart action to the venous system is partly compensated by the lymphatic system which is the third circulatory system to assist venous system independently with different hemodynamics. The lymphatic system with own unique Iymphodynamics based on peristaltic circulation from low resistance to high resistance condition, also increases its circulation to assist the compensation of overloaded venous system. Once these compensation mechanisms should fail to fight to newly established hemodynamic condition due to this abnormal AV connection, each system start to show different physiologic ${\underline{de}compensation}$ including heart and lymphatic system. The vicious cycle of decompensation between arterial and vein, two circulatory system affecting each other by mutually negative way steadily progresses to show series of hemodynamic change throughout entire circulation system altogether including heart. Clinical outcome of AV fistula from the compensated status to decompensated status is closely affected by various biological and mechanical factors to make the hemodynmic status more complicated. Proper understanding of these crucial biomechanical factors iii particular on hemodyanmic point of view is mandatory for the advanced assessment of biomechanical impact of AV fistula, since this new advanced concept of AY fistula based on blomechanical information will be able to improve clinical control of the complicated AV fistula, either congenital or acquired.

  • PDF

Changes in air pollutant emissions from road vehicles due to autonomous driving technology: A conceptual modeling approach

  • Hwang, Ha;Song, Chang-Keun
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.366-373
    • /
    • 2020
  • The autonomous vehicles (AVs) could make a positive or negative impact on reducing mobile emissions. This study investigated the changes of mobile emissions that could be caused by large-scale adoption of AVs. The factors of road capacity increase and speed limit increase impacts were simulated using a conceptual modeling approach that combines a hypothetical speed-emission function and a traffic demand model using a virtual transportation network. The simulation results show that road capacity increase impact is significant in decreasing mobile emissions until the market share of AVs is less than 80%. If the road capacity increases by 100%, the mobile emissions will decrease by about 30%. On the other hand, driving speed limit increase impact is significant in increasing mobile emissions, and the environmentally desirable speed limit was found at around 95 km/h. If the speed limit increases to 140 km/h, the mobile emissions will increase by about 25%. This is because some vehicles begin to bypass the congested routes at high speeds as speed limit increases. Based on the simulation results, it is clear that the vehicle platooning technology implemented at reasonable speed limit is one of the AV technologies that are encouraging from the environmental point of view.

Firework plot as a graphical exploratory data analysis tool for evaluating the impact of outliers in skewness and kurtosis of univariate data (일변량 자료의 왜도와 첨도에서 특이점의 영향을 평가하기 위한 탐색적 자료분석 그림도구로서의 불꽃그림)

  • Moon, Sungho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.355-368
    • /
    • 2016
  • Outliers and influential data points distort many data analysis measures. Jang and Anderson-Cook (2014) proposed a graphical method called a rework plot for exploratory analysis purpose so that there could be a possible visualization of the trace of the impact of the possible outlying and/or influential data points on the univariate/bivariate data analysis and regression. They developed 3-D plot as well as pairwise plot for the appropriate measures of interest. This paper further extends their approach to identify its strength. We can use rework plots as a graphical exploratory data analysis tool to evaluate the impact of outliers in skewness and kurtosis of univariate data.

Energy absorption optimization on a sandwich panel with lattice core under the low-velocity impact

  • Keramat Malekzadeh Fard;Meysam Mahmoudi
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.525-538
    • /
    • 2023
  • This paper focuses on the energy absorption of lattice core sandwich structures of different configurations. The diamond lattice unit cell, which has been extensively investigated for energy absorption applications, is the starting point for this research. The energy absorption behaviour of sandwich structures with an expanded metal sheet as the core is investigated at low-velocity impact loading. Numerical simulations were carried out using ABAQUS/EXPLICIT and the results were thoroughly compared with the experimental results, which indicated desirable accuracy. A parametric analysis, using a Box-Behnken design (BBD), as a method for the design of experiments (DOE), was performed. The samples fabricated in three levels of parameters include 0.081, 0.145, and 0.562 mm2 Cell sizes, and 0, 45, and 90-degree cell orientation, which were investigated. It was observed from experimental data that the angle of cells orientation had the highest degree of influence on the specific energy absorption. The results showed that the angle of cells orientation has been the most influential parameter to increase the peak forces. The results from using the design expert software showed the optimal specific energy absorption and peak force to be 1786 J/kg and 26314.4 N, respectively. The obtained R2 values and normal probability plots indicated a good agreement between the experimental results and those predicted by the model.

Particle capture by radiation drag around a highly luminous compact stars

  • Oh, Jae Sok;Park, Chan;Kim, Hongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2013
  • xIn the present work, we explored the effect of the radiation on the effective impact parameter for capture in a fully general relativistic manner. To summarize our results, evidently due to the radiation drag (the Poynting-Robertson effect), critical impact parameter of point particle gets larger by the factor of two, thus, the effective cross section of the luminous relativistic star becomes 4 times larger than that of the star without radiation emission. In addition, the finite size effect of the star adds up to this growth of the effective cross section.

  • PDF

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF