• Title/Summary/Keyword: pohang earthquake

Search Result 164, Processing Time 0.028 seconds

Feasibility Study for Revision of Domestic Liquefaction Evaluation Criteria by Analyzing the Liquefaction Phenomenon Caused by the Pohang Earthquake (포항지진 액상화 현상 분석을 통한 국내 액상화 평가 기준의 개정 타당성 검토)

  • Ha, Ik-Soo;Oh, I-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.17-30
    • /
    • 2020
  • In this study, liquefaction evaluation was performed by applying liquefaction evaluation criteria commonly applied in Korea and recently revised evaluation criteria to five sites where liquefaction was observed or potential for liquefaction was high during the 2017 Pohang earthquake. The purpose of this study is to examine the validity of the revised domestic liquefaction evaluation criteria by comparing and reviewing the results of the theoretical liquefaction evaluation with the actual liquefaction occurrence at the sites. For the analysis of earthquakes for the evaluation of the liquefaction, the actual Pohang earthquake wave, as well as the waves that was conventionally used in Korea, was used. The magnitude of the peak ground acceleration of analysis earthquake varied from 0.097 g to 0.2713 g. From the analysis results, the validity of the liquefaction evaluation criteria presented in the 2016 Foundation Design Criteria, which has been commonly applied in Korea, was evaluated. From the evaluation results, the improvement of the existing criteria was suggested, and the suitability of revised items of liquefaction evaluation criteria presented in the Seismic Design General established in 2018 was confirmed.

Response Characteristics of Site-specific using Aftershock Event (여진을 통해 살펴본 대상구간의 응답특성)

  • Ahn, Jae-Kwang;Cho, Seongheum;Jeon, Young-Soo;Lee, Duk Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.51-64
    • /
    • 2018
  • Korean peninsula is known to be far from the plate boundary and not to generate large-scale earthquakes. However, earthquakes recently occurred in Gyeongju (2016/09/12, $M_L=5.8$) and Pohang (2017/11/15, $M_L=5.4$). The interest in earthquake engineering has increased, and various studies are actively underway by recently events. However, the seismic station network in Korea is less dense than that of the western U.S., resulting in the lack of data for detailed analyses of earthquakes. Therefore, KMA (Korea Meteorological Administration) set up temporary seismic stations and recorded ground motions from aftershocks. In this study, characteristics of Pohang seismic propagation and generation of bedrock motion are analyzed through the aftershock ground motion records at both permanent and temporary stations, as well as through the collected geological structure and site information. As a result, the response at Mangcheon-Li shows evidences of basin effects from both geology structures and measured aftershock motions.

Evaluation of the Relationship Between Possible Earthquake Time History Shape Occurring in a Target Fault Using Pseudo-Basis Function (유사기저함수를 사용한 대상 단층에서 발생 가능 지진파 형태 사이의 관계 표현 방법 개발 및 포항 단층과 경주 단층 발생 지진에의 적용)

  • Park, Hyung Choon;Oh, Hyun Ju
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-145
    • /
    • 2023
  • It is essential to determine a proper earthquake time history as a seismic load in a seismic design for a critical structure. In the code, a seismic load should satisfy a design response spectrum and include the characteristic of a target fault. The characteristic of a fault can be represented by a definition of a type of possible earthquake time history shape that occurred in a target fault. In this paper, the pseudo-basis function is proposed to be used to construct a specific type of earthquake, including the characteristic of a target fault. The pseudo-basis function is derived from analyzing the earthquake time history of specific fault harmonic wavelet transform. To show the feasibility of this method, the proposed method was applied to the faults causing the Gyeong-Ju ML5.8 and Pohang ML5.3 earthquakes.

Deformation History of the Pohang Basin in the Heunghae Area, Pohang and Consideration on Characteristics of Coseismic Ground Deformations of the 2017 Pohang Earthquake (Mw 5.4), Korea (포항 흥해지역에서 포항분지의 변형작용사와 2017 포항지진(Mw 5.4) 동시성 지표변형 특성 고찰)

  • Ji-Hoon, Kang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.485-505
    • /
    • 2022
  • On November 15, 2017, a Mw 5.4 Pohang Earthquake occurred at about 4 km hypocenter in the Heunghae area, and caused great damage to Pohang city, Korea. In the Heunghae area, which is the central part of the Pohang Basin, the Cretaceous Gyeongsang Supergroup and the Late Cretaceous to Early Paleogene Bulguksa igneous rocks as basement rocks and the Neogene Yeonil Group as the fillings of the Pohang Basin, are distributed. In this paper, structural and geological researches on the crustal deformations (folds, faults, joints) in the Pohang Basin and the coseismic ground deformations (sand volcanoes, ground cracks, pup-up structures) of Pohang Earthquake were carried out, and the deformation history of the Pohang Basin and characteristics of the coseismic ground deformations were considered. The crustal deformations were formed through at least five deformation stages before the Quaternary faulting: forming stages of the normal-slip (Gokgang fault) faults which strike (N)NE and dip at high angles, and the high-angle joints of E-W trend regionally recognized in Yeonil Group and the faults (sub)parallel to them, and the conjugate normal-slip faults (Heunghae fault and Hyeongsan fault) which strike E-W and dip at middle or low angles and the accompanying E-W folds, and the conjugate strike-slip faults dipped at high angles in which the (N)NW and E-W (NE) striking fault sets show the (reverse) sinistral and dextral strike-slips, respectively, and the conjugate reverse-slip faults in which the NNE and NNW striking fault sets dip at middle angles and the accompanying N-S folds. Sand volcanoes often exhibit linear arrangements (sub)parallel to ground cracks in the coseismic ground deformations. The N-S or (N)NE trending pop-up structures and ground cracks and E-W or (W)NW trending ground were formed by the reverse-slip movement of the earthquake source fault and the accompanying buckling folding of its hanging wall due to the maximum horizontal stress of the Pohang Earthquake source. These structural activities occurred extensively in the Heunghae area, which is at the hanging wall of the earthquake source fault, and caused enormous property damages here.

Experimental Evaluation of PC Non-Bearing Wall System for the Damage Control of RC Wall Type Apartments (RC 벽식 아파트의 손상 제어를 위한 PC 비내력벽 시스템의 실험적 평가)

  • Moon, Kyo Young;Kim, Siyun;Kim, Sung Jig;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.77-84
    • /
    • 2019
  • This study introduces a newly developed PC non-bearing wall system to prevent the damage of RC wall-type apartments that have been heavily damaged by the 2017 Pohang Earthquake. In order to evaluate the performance of the developed PC non-bearing wall system, a static cyclic test is conducted. The prototype of test specimen is from the RC wall-type apartment which has been severely damaged by the 2017 Pohang Earthquake. The specimen with the conventional non-bearing wall system showed the similar damage of RC wall type apartment suffered from the Pohang Earthquake. In case of the specimen with the developed PC non-bearing wall system, cracks and damages were not transmitted between the walls due to the seismic slit and there were almost no cracks in the non-bearing walls. Therefore, the proposed non-bearing wall system, separated from the structural walls, could prevent spreading cracks to bearing walls and make it possible to effectively control damage due to earthquake loads.

Analysis of Reservoir Vulnerability Based on Geological Structure Around Pohang Earthquake (포항지진 발생 주변지역 지질특성에 따른 저수지 취약성 해석)

  • Lim, Sung Keun;Song, Sung-Ho;Yu, Jaehyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2018
  • A total of 594 reservoirs (17%), which are managed by KRC, equipped with earthquake-resistant facilities whereas remaining ones did not. In addition, reservoirs were placed without the effect of geological structures (i.e., fault and lineament). Therefore, development on technique for alleviating the potential hazards by natural disasters along faults and lineaments has required. In addition, an effective reinforcement guideline related to the geological vulnerabilities around reservoirs has required. The final goal of this study is to suggest the effective maintenance for the safety of earth fill dams. A radius 2 km, based on the center of the reservoir in the study area was set as the range of vulnerability impacts of each reservoir. Seismic design, precise safety diagnosis, seismic influence and geological structure were analyzed for the influence range of each reservoir. To classify the vulnerability of geological disasters according to the fault distribution around the reservoir, evaluation index of seismic performance, precise safety diagnosis, seismic influence and geological structure were also developed for each reservoir, which were a component of the vulnerability assessment of geological disasters. As a result, the reservoir with the highest vulnerability to geological disasters in the pilot district was analyzed as Kidong reservoir with an evaluation index of 0.364. Within the radius of 100km from the epicenter of the Pohang earthquake, the number of agricultural infrastructure facilities subject to urgent inspections were 1,180 including reservoirs, pumping stations and intakes. Four reservoirs were directly damaged by earthquake among 724 agricultural reservoirs. As a result of the precise inspection and electrical resistivity survey of the reservoir after the earthquake, it was reported that cracks on the crest of reservoirs were not a cause of concern. However, we are constantly monitoring the safety of agricultural facilities by Pohang aftershocks.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

Development of Guidebook to Support Victim's Life Recovery and Improvement of Domestic Earthquake Damage Recovery through Earthquake Damage Cases in Korea and Japan (국내외 지진피해 사례를 통한 국내 지진피해 복구 상의 개선방안과 피해자 생활복구 지원 가이드북 개발에 관한 연구)

  • Kim, Su-Ran;Kim, Hye-Won
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.1
    • /
    • pp.470-484
    • /
    • 2020
  • An earthquake of magnitude 5.4 occurred on November 15, 2017 in Pohang, which caused the damage to buildings and facilities. The earthquake displaced more than 1,700 people. After the Pohang Earthquake, immediate emergency, such as the damage survey and running of shelters have been executed appropriately. However there have been issues with subsequent restoration measures, such as the provision of temporary housing and delivery of natural disaster allowance. As there was inadequate government advertisement about the natural disaster allowance, victims of the earthquake could not receive tangible help. In Japan on the other hand where earthquakes are frequent, post-earthquake restoration protocols are planned well in advance. For example, Japanese earthquake victims are provided with a guidebook outlining different types of government aids available for them so that they can rapidly access government aid. In this study, we refer to the case of Pohang earthquake to analyse the problems in the national earthquake restoration plans and propose how they can be improved by comparing it to Japanese post-earthquake case and a Korean equivalent should be developed, to aid Korean earthquake victims to return to their every life as soon as possible.

A Study on Countermeasures between Central and Local Governments for Earthquake Disaster Management of Pohang, Korea (우리나라 포항지진 재난관리에 대한 중앙·지방정부 간 대책 방안 연구)

  • La, Hong Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.25-34
    • /
    • 2019
  • Modern disasters prevent accidents in advance and recover after accidents are very important. Our government's current response to these accidents is not appropriate. As for disaster management so far, it has been the center of disaster response and recovery efforts, and has been led by the government against it. The reality is that most private organizations and agencies have only subsidized government disaster management agencies. Korea is no longer a safe zone for earthquakes. Now for the establishment of effective disaster management system for earthquakes in the diagnosis is very urgent and the problems of the operational disaster management, which the problems of the nation.Policies to improve academic efforts to seek alternative proposal is also at a time when volume can be said to be very big need to mine. This study from 2016 to 2019, about the earthquake that took place between National Statistical Office, based on analysis of data to. First of all, research 1: What was the government's plan on Pohang earthquake? The results showed that the residents' evacuation of Pohang was important in the Pohang earthquake, but for the sake of students' safety, they were directly assigned to the test site to cope with the emergency situation. Therefore, the research and analysis shows that the nation should continue to think about the causes and responses of the damage at the disaster site and strive to develop technologies and methods to minimize the damage.

Liquefaction Resistance of Pohang Sand (포항모래의 액상화 저항 특성에 관한 연구)

  • Park, Sung-Sik;Nong, Zhenzhen;Choi, Sun-Gyu;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.5-17
    • /
    • 2018
  • A magnitude 5.4 earthquake struck the city of Pohang, North Gyeongsang Province, South Korea on November 15, 2017. Many sand volcanoes were observed on paddy fields, parks and roads. This phenomenon was the first to be observed as a sign of soil liquefaction in South Korea. In this study, two different kinds of ejected Pohang sands were collected from a liquefied paddy field. Those sands were reconstituted into loose and dense conditions and then a series of cyclic simple shear tests were conducted under confining stresses of 100 and 200 kPa. A real earthquake motion was also repetitively applied to the specimen. As a result of constant shear stress tests, the cyclic resistance ratio (CRR) of loose sand was 0.12-0.14, while the CRR value of dense sand was 0.17-0.21. It was shown that the relative density was more influencing factor on liquefaction resistance than the sand types and initial confining stress. When a real Pohang earthquake motion was repetitively applied to the specimen, a loose sand was liquefied at the second earthquake motion but the dense sand at the third earthquake motion.