• 제목/요약/키워드: pluripotency

Search Result 107, Processing Time 0.028 seconds

Allogeneic serum improves the expansion and maintenance of canine mesenchymal stem cells

  • Yong-ho Choe;Sang-Yun Lee;Young-Bum Son;Won-Jae Lee;Hyeonjeong Lee;Chan-Hee Jo;Seong-Ju Oh;Tae-Seok Kim;Chae-Yeon Hong;Sung-Lim Lee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.153-163
    • /
    • 2024
  • Background: The clinical application of canine mesenchymal stem cells (MSCs) necessitates efficient and safe culture methods to produce large quantities of cells. Traditionally, fetal bovine serum (FBS) has been used for MSC expansion, but it carries risks such as contamination and adverse immune responses. Methods: In this study, we investigate the efficacy and efficiency of canine allogeneic serum as an effective alternative to FBS for the in vitro culture of canine MSCs. We measured the population doubling time of canine MSCs in allogeneic serum conditions and utilized qRT-PCR, flowcytometric analysis, and cellular staining/color-metric assay for investigating its effects on cellular senescence during long-term culture and the expression of key pluripotency-related transcriptomes. Results: Our findings demonstrate that canine MSCs cultured with allogeneic serum exhibited enhanced proliferation rates, reduced cellular senescence, and lower apoptosis levels compared to those cultured with FBS. Additionally, the expression of key pluripotency-related transcription factors, including Oct4, Sox2, and Nanog, was increased in canine MSCs cultured with allogeneic serum. Conclusions: These results highlight the potential of canine allogeneic serum to provide a safer and more effective culture environment, supporting the large-scale expansion and maintenance of canine MSCs for clinical applications.

Generation and Characterization of a Monoclonal Antibody with Specificity for Mycoplasma arginini

  • Son, Yeon-Sung;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Previously, we generated monoclonal antibodies (MAbs) that bound to the surface of human embryonic stem cells (hESCs) in an attempt to discover new hESC-specific surface markers. In this study, MAb 47-235 (IgG1, ${\kappa}$) was selected for further characterization. The MAb bound to the surface of undifferentiated hESCs but did not bind to mouse ESCs or mouse embryonic fibroblast cells in flow cytometric analysis. The antibody immunoprecipitated a 47 kDa protein from the lysates of cell surface-biotinylated hESCs. Identification of the protein by quadrupole time of flight tandem mass spectrometry revealed that 47-235 binds to Ag 243-5 protein of Mycoplasma arginini. BM-Cyclin treatment of the hESCs that reacted with 47-235 resulted in loss of mycoplasma DNA and the reactivity to 47-235. Nevertheless, the hESCs that were reactive to 47-235 maintained self-renewal and pluripotency and thus could be differentiated into three embryonic germ layers.

Emerging Roles of Krüppel-Like Factor 4 in Cancer and Cancer Stem Cells

  • Ding, Bo;Liu, Ping;Liu, Wen;Sun, Ping;Wang, Chun-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3629-3633
    • /
    • 2015
  • Cancer stem cells (CSCs) are rare subpopulations within tumors which are recognized as culprits in cancer recurrence, drug resistance and metastasis. However, the molecular mechanisms of how CSCs are regulated remain elusive. Kr$\ddot{u}$ppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverse functions in cell differentiation, proliferation, embryogenesis and pluripotency. Recent progress has highlighted the significance of KLFs, especially KLF4, in cancer and CSCs. Therefore, for better therapeutics of cancer disease, it is crucial to develop a deeper understanding of the mechanisms of how KLF4 regulate CSC functions. Herein we summarized the current understanding of the transcriptional regulation of K LF4 in CSCs, and discussed the functional implications of targeting CSCs for potential cancer therapeutics.

Porcine OCT4 reporter system as a tool for monitoring pluripotency states

  • Kim, Seung-Hun;Lee, Chang-Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Pluripotent stem cells could self-renew and differentiate into various cells. In particular, porcine pluripotent stem cells are useful for preclinical therapy, transgenic animals, and agricultural usage. These stem cells have naïve and primed pluripotent states. Naïve pluripotent stem cells represented by mouse embryonic stem cells form chimeras after blastocyst injection. Primed pluripotent stem cells represented by mouse epiblast stem cells and human embryonic stem cells. They could not produce chimeras after blastocyst injection. Populations of embryonic stem cells are not homogenous; therefore, reporter systems are used to clarify the status of stem cells and to isolate the cells. For this reason, studies of the OCT4 reporter system have been conducted for decades. This review will discuss the naïve and primed pluripotent states and recent progress in the development of porcine OCT4 reporter systems.

In vitro culture of chicken embryonic stem cell-like cells

  • Bo Ram Lee;Hyeon Yang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • Chicken embryonic stem (ES) cells have great potential and provide a powerful tool to investigate embryonic development and to manipulate genetic modification in a genome. However, very limited studies are available on the functional characterization and robust expansion of chicken ES cells compared to other species. Here, we have developed a method to generate chicken embryonic stem cell-like cells under pluripotent culture conditions. The chicken embryonic stem cell-like cells were cultivated long-term over several passages of culture without loss of pluripotency in vitro and had the specific expression of key stem cell markers. Furthermore, they showed severe changes in morphology and a significant reduction in pluripotent genes after siRNA-mediated NANOG knockdown. Collectively, these results demonstrate the efficient generation of chicken embryonic stem cell-like cells from EGK stage X blastoderm-derived singularized cells and will facilitate their potential use for various purposes, such as biobanking genetic materials and understanding stemness in the fields of animal biotechnology.

Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells

  • Ok-Hyeon Kim;Tae Jin Jeon;Young In So;Yong Kyoo Shin;Hyun Jung Lee
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.

Generation and Application of Directly Reprogrammed Endothelial Cells

  • Cholomi Jung;Jee Eun Oh;Sangho Lee;Young-sup Yoon
    • Korean Circulation Journal
    • /
    • v.52 no.9
    • /
    • pp.643-658
    • /
    • 2022
  • Cell-based therapy has emerged as a promising option for treating advanced ischemic cardiovascular disease by inducing vascular regeneration. However, clinical trials with adult cells turned out disappointing in general. As a newer approach, direct reprogramming has emerged to efficiently generate endothelial cells (ECs), which can promote neovascularization and vascular regeneration. This review provides recent updates on the direct endothelial reprogramming. In general, directly reprogrammed ECs can be generated by two approaches: one by transitioning through a plastic intermediate state and the other in a one-step transition without any intermediate states toward pluripotency. Moreover, the methods to deliver reprogramming factors and chemicals for the fate conversion are highlighted. Next, the therapeutic effects of the directly reprogrammed ECs on animal models are reviewed in detail. Other applications using directly reprogrammed ECs, such as tissue engineering and disease modeling, are also discussed. Lastly, the remaining questions and foremost challenges are addressed.

Effects of Cell Cycle Regulators on the Cell Cycle Synchronization of Porcine induced Pluripotent Stem Cells

  • Kwon, Dae-Jin;Hwang, In-Sul;Kwak, Tae-Uk;Yang, Hyeon;Park, Mi-Ryung;Ock, Sun-A;Oh, Keon Bong;Woo, Jae-Seok;Im, Gi-Sun;Hwang, Seongsoo
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Unlike mouse results, cloning efficiency of nuclear transfer from porcine induced pluripotent stem cells (piPSCs) is very low. The present study was performed to investigate the effect of cell cycle inhibitors on the cell cycle synchronization of piPSCs. piPSCs were generated using combination of six human transcriptional factors under stem cell culture condition. To examine the efficiency of cell cycle synchronization, piPSCs were cultured on a matrigel coated plate with stem cell media and they were treated with staurosporine (STA, 20 nM), daidzein (DAI, $100{\mu}M$), roscovitine (ROSC, $10{\mu}M$), or olomoucine (OLO, $200{\mu}M$) for 12 h. Flow Cytometry (FACs) data showed that piPSCs in control were in G1 ($37.5{\pm}0.2%$), S ($34.0{\pm}0.6%$) and G2/M ($28.5{\pm}0.4%$). The proportion of cells at G1 in DAI group was significantly higher than that in control, while STA, ROSC and OLO treatments could not block the cell cycle of piPSCs. Both of viability and apoptosis were affected by STA and ROSC treatment, but there were no significantly differences between control and DAI groups. Real-Time qPCR and FACs results revealed that DAI treatment did not affect the expression of pluripotent gene, Oct4. In case of OLO, it did not affect both of viability and apoptosis, but Oct4 expression was significantly decreased. Our results suggest that DAI could be used for synchronizing piPSCs at G1 stage and has any deleterious effect on survival and pluripotency sustaining of piPSCs.

Establishment and Maintenance of Embryonic Stem-like Cell Lines from In Vitro Produced Bovine Blastocysts (체외수정 유래 소 배반포로부터 유사 배아 줄기 세포의 확립 및 유지)

  • Lee, Yu-Yeon;Kim, Sun-Uk;Kim, Ji-Su;Song, Bong-Seok;Cho, Yoon-Jeong;Park, Jung-Sun;Yu, Dae-Yeul;Jin, Dong-Il;Lee, Kyung-Kwang;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • This study was conducted to examine the establishment of bovine ES-like cells having pluripotency. The hatched blastocysts derived from culture of in vitro fertilized embryos for 10 to 12 days dissociated mechanically into ICM-and trophectoderm-rich clumps using needle, and cultured onto mitotically-inactivated MEF feeder layer. The primary colonies originated from ICM cells were detached mechanically 7 days after seeding and subsequent subculture was conducted at intervals of every 5 to 7 days. Two ES -like cell lines were established and maintained over 40 passages. Self-renewal of the established lines was confirmed by examining the alkaline phosphatase activity, stem cell-specific marker profiles including SSEA isotopes, Oct-4 and STAT3. Moreover, the established cell lines could produce anchorage-independent embryoid bodies (EBs) with gradual decrease of Oct-4 transcript level in time-dependent manner.

Recent Progress on Skin-Derived Mesenchymal Stem Cells in Pigs

  • Kumar, B. Mohana;Patil, Rajreddy;Lee, Sung-Lim;Rho, Gyu-Jin
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.283-290
    • /
    • 2012
  • Skin serves as an easily accessible source of multipotent stem cells with potential for cellular therapies. In pigs, stem cells from skin tissues of fetal and adult origins have been demonstrated as either floating spheres (cell aggregates) or adherent spindle-shaped mesenchymal stem cell (MSC)-like cells depending on culture conditions. The cells isolated from the epidermis and dermis of porcine skin showed plastic adherent growth in the presence of serum and positively expressed a range of surface and intracellular markers that are considered to be specific for MSCs. The properties of primitive stem cells have been observed with the expression of alkaline phosphatase and markers related to pluripotency. Further, studies have shown the ability of skin-derived MSCs to differentiate in vitro along mesodermal, neuronal and germ-line lineages. Moreover, preclinical studies have also been performed to assess their in vivo potential, and the findings appear to be effective in tissue regeneration at the defected site after transplantation. The present review describes the recent progress on the biological features of porcine skin-derived MSCs as adherent cells, and summarizes their potential in advancing stem cell based therapies.