DOI QR코드

DOI QR Code

Emerging Roles of Krüppel-Like Factor 4 in Cancer and Cancer Stem Cells

  • Ding, Bo (Department of Orthodontics, School of Stomatology, Shandong University) ;
  • Liu, Ping (Department of Orthodontics, Jinan Stomatological Hospital) ;
  • Liu, Wen (Department of Stomatology, Qingdao Municipal Hospital) ;
  • Sun, Ping (Obstetrical Department, Qingdao Central Hospital) ;
  • Wang, Chun-Ling (Department of Orthodontics, School of Stomatology, Shandong University)
  • Published : 2015.05.18

Abstract

Cancer stem cells (CSCs) are rare subpopulations within tumors which are recognized as culprits in cancer recurrence, drug resistance and metastasis. However, the molecular mechanisms of how CSCs are regulated remain elusive. Kr$\ddot{u}$ppel-like factors (KLFs) are evolutionarily conserved zinc finger-containing transcription factors with diverse functions in cell differentiation, proliferation, embryogenesis and pluripotency. Recent progress has highlighted the significance of KLFs, especially KLF4, in cancer and CSCs. Therefore, for better therapeutics of cancer disease, it is crucial to develop a deeper understanding of the mechanisms of how KLF4 regulate CSC functions. Herein we summarized the current understanding of the transcriptional regulation of K LF4 in CSCs, and discussed the functional implications of targeting CSCs for potential cancer therapeutics.

Keywords

References

  1. Baccelli I, Trump A (2012). The evolving concept of cancer and metastasis stem cells. J Cell Biol, 198, 281-93. https://doi.org/10.1083/jcb.201202014
  2. Cabarcas SM, Mathews LA, Farrar WL (2011). The cancer stem cell niche--there goes the neighborhood. Int J Cancer, 129, 2315-27. https://doi.org/10.1002/ijc.26312
  3. Chen C, Benjamin MS, Sun X, et al (2006). KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int J Cancer, 118, 1346-55. https://doi.org/10.1002/ijc.21533
  4. Chen J, Li Y, Yu TS, et al (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 488, 522-6. https://doi.org/10.1038/nature11287
  5. Choi BJ, Cho YG, Song JW, et al (2006). Altered expression of the KLF4 in colorectal cancers. Pathol Res Pract, 202, 585-9. https://doi.org/10.1016/j.prp.2006.05.001
  6. Clarke MF, Dick JE, Dirks PB, et al (2006). Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res, 66, 9339-44. https://doi.org/10.1158/0008-5472.CAN-06-3126
  7. Dalerba P, Cho RW, Clarke MF (2007). Cancer stem cells: models and concepts. Annu Rev Med, 58, 267-84. https://doi.org/10.1146/annurev.med.58.062105.204854
  8. Dang DT, Chen X, Feng J, et al (2003). Overexpression of kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene, 22, 3424-30. https://doi.org/10.1038/sj.onc.1206413
  9. Dean M, Fojo T, Bates S (2005). Tumour stem cells and drug resistance. Nat Rev Cancer, 5, 275-84. https://doi.org/10.1038/nrc1590
  10. Dong Z, Yang L, Lai D (2013). KLF5 strengthens drug resistance of ovarian cancer stem-like cells by regulating survivin expression. Cell Prolif, 46, 425-35. https://doi.org/10.1111/cpr.12043
  11. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012). Defining the mode of tumour growth by clonal analysis. Nature, 488, 527-30. https://doi.org/10.1038/nature11344
  12. Eaton SA, Funnell AP, Sue N, et al (2008). A network of kruppellike factors (Klfs).. Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem, 283, 26937-47. https://doi.org/10.1074/jbc.M804831200
  13. Garvey SM, Sinden DS, Schoppee BPD, Wamhoff BR (2010). Cyclosporine up-regulates Kruppel-like factor-4 (KLF4). in vascular smooth muscle cells and drives phenotypic modulation in vivo. J Pharmacol Exp Ther, 333, 34-42. https://doi.org/10.1124/jpet.109.163949
  14. Gilbertson RJ, Graham TA (2012). Cancer: Resolving the stemcell debate. Nature, 488, 462-3. https://doi.org/10.1038/nature11480
  15. Hao J, Zhang Y, Deng M, et al (2014). MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer, 135, 1019-27. https://doi.org/10.1002/ijc.28761
  16. Ho A, Fusenig N (2011). Cancer stem cells: a promising concept and therapeutic challenge. Int J Cancer, 129, 2309. https://doi.org/10.1002/ijc.26409
  17. Keymoosi H, Gheytanchi E, Asgari M, Shariftabrizi A, Madjd Z (2014). ALDH1 in combination with CD44 as putative cancer stem cell markers are correlated with poor prognosis in urothelial carcinoma of the urinary bladder. Asian Pac J Cancer Prev, 15, 2013-20. https://doi.org/10.7314/APJCP.2014.15.5.2013
  18. King KE, Iyemere VP, Weissberg PL, Shanahan CM (2003). Kruppel-like factor 4 (KLF4/GKLF). is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem, 278, 11661-9. https://doi.org/10.1074/jbc.M211337200
  19. Kreso A, Dick JE (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14, 275-291. https://doi.org/10.1016/j.stem.2014.02.006
  20. Lapidot T, Sirard C, Vormoor J, et al (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645-8. https://doi.org/10.1038/367645a0
  21. Leng Z, Tao K, Xia Q, et al (2013). Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One, 8, 56082. https://doi.org/10.1371/journal.pone.0056082
  22. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2013). Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett, 338, 94-100. https://doi.org/10.1016/j.canlet.2012.03.018
  23. Magee JA, Piskounova E, Morrison SJ (2012). Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283-96. https://doi.org/10.1016/j.ccr.2012.03.003
  24. McConnell BB, Yang VW (2010). Mammalian Kruppel-like factors in health and diseases. Physiol Rev, 90, 1337-81. https://doi.org/10.1152/physrev.00058.2009
  25. Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol, 127, 2021-36. https://doi.org/10.1083/jcb.127.6.2021
  26. Miller IJ, Bieker JJ (1993). A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol, 13, 2776-86. https://doi.org/10.1128/MCB.13.5.2776
  27. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012). Cancer stem cells: an evolving concept. Nat Rev Cancer, 12, 133-43.
  28. Nishi M, Sakai Y, Akutsu H, et al (2013). Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene, 33, 643-52.
  29. Okuda H, Xing F, Pandey PR, et al (2013). miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res, 73, 1434-44. https://doi.org/10.1158/0008-5472.CAN-12-2037
  30. Oskarsson T (2013). Extracellular matrix components in breast cancer progression and metastasis. Breast, 22, 66-72. https://doi.org/10.1016/j.breast.2013.07.012
  31. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105-11. https://doi.org/10.1038/35102167
  32. Sabet MN, Rakhshan A, Erfani E, Madjd Z (2014). Co-expression of putative cancer stem cell markers, CD133 and Nestin, in skin tumors. Asian Pac J Cancer Prev, 15, 8161-9. https://doi.org/10.7314/APJCP.2014.15.19.8161
  33. Sarig R, Rivlin N, Brosh R, et al (2010). Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med, 207, 2127-40. https://doi.org/10.1084/jem.20100797
  34. Schepers AG, Snippert HJ, Stange DE, et al (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337, 730-5. https://doi.org/10.1126/science.1224676
  35. Siegel R, Ma J, Zou Z, Jemal A (2014). Cancer Statistics, 2014. CA Cancer J Clin, 64, 104-17. https://doi.org/10.3322/caac.21220
  36. Tang DG (2012). Understanding cancer stem cell heterogeneity and plasticity. Cell Res, 22, 457-72. https://doi.org/10.1038/cr.2012.13
  37. Tetreault MP, Yang Y, Katz JP (2013). Kruppel-like factors in cancer. Nat Rev Cancer, 13, 701-13. https://doi.org/10.1038/nrc3582
  38. Vaira V, Faversani A, Martin NM, et al (2013). Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res, 73, 2695-705. https://doi.org/10.1158/0008-5472.CAN-12-4232
  39. Visvader JE, Lindeman GJ (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 8, 755-68. https://doi.org/10.1038/nrc2499
  40. Wang H, Yang L, Jamaluddin MS, Boyd DD (2004). The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells. J Biol Chem, 279, 22674-83. https://doi.org/10.1074/jbc.M401257200
  41. Wang X, Lu H, Li T, et al (2013). Kruppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res, 3, 356-73.
  42. Wang X, Zhao J (2007). KLF8 transcription factor participates in oncogenic transformation. Oncogene, 26, 456-61. https://doi.org/10.1038/sj.onc.1209796
  43. Wang X, Zheng M, Liu G, et al (2007). Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res, 67, 7184-93. https://doi.org/10.1158/0008-5472.CAN-06-4729
  44. Wellner U, Schubert J, Burk UC, et al (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemnessinhibiting microRNAs. Nat Cell Biol, 11, 1487-95. https://doi.org/10.1038/ncb1998
  45. Wernig M, Meissner A, Foreman R, et al (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318-24. https://doi.org/10.1038/nature05944
  46. Wong CW, Hou PS, Tseng SF, et al (2010). Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells, 28, 1510-7. https://doi.org/10.1002/stem.477
  47. Wu XQ, Huang C, He X, et al (2013). Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal, 25, 2462-8. https://doi.org/10.1016/j.cellsig.2013.08.009
  48. Yamanaka S (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1, 39-49. https://doi.org/10.1016/j.stem.2007.05.012
  49. Yang J, Weinberg RA (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 14, 818-29. https://doi.org/10.1016/j.devcel.2008.05.009
  50. Ying M, Sang Y, Li Y, et al (2011). Kruppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells, 29, 20-31. https://doi.org/10.1002/stem.561
  51. Yori JL, Johnson E, Zhou G, Jain MK, Keri RA (2010). Kruppellike factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem, 285, 16854-63. https://doi.org/10.1074/jbc.M110.114546
  52. Yori JL, Seachrist DD, Johnson E, et al (2011). Kruppel-like factor 4 inhibits tumorigenic progression and metastasis in a mouse model of breast cancer. Neoplasia, 13, 601-10. https://doi.org/10.1593/neo.11260
  53. Yu F, Li J, Chen H, et al (2011). Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene, 30, 2161-72. https://doi.org/10.1038/onc.2010.591
  54. Yu T, Chen X, Zhang W, et al (2012). Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol Chem, 287, 3760-8. https://doi.org/10.1074/jbc.M111.316349
  55. Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I (2013). Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene, 32, 2249-60. https://doi.org/10.1038/onc.2012.237
  56. Zheng H, Pritchard DM, Yang X, et al (2009). KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol, 296, 490-8. https://doi.org/10.1152/ajpgi.90393.2008

Cited by

  1. Krüppel-like factor 4 promotes high-mobility group box 1-induced chemotherapy resistance in osteosarcoma cells vol.107, pp.3, 2016, https://doi.org/10.1111/cas.12864
  2. Loss of KLF4 and consequential downregulation of Smad7 exacerbate oncogenic TGF-β signaling in and promote progression of hepatocellular carcinoma vol.36, pp.21, 2017, https://doi.org/10.1038/onc.2016.447
  3. Role of Krüppel-like factor 4 and heat shock protein 27 in cancer of the larynx vol.7, pp.5, 2017, https://doi.org/10.3892/mco.2017.1412
  4. Curcumin-mediated demethylation of the proximal promoter CpG island enhances the KLF4 recruitment that leads to increased expression of p21Cip1 in vitro vol.120, pp.1, 2019, https://doi.org/10.1002/jcb.27442
  5. The Role of KLF4 in Alzheimer’s Disease vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00325