References
- Baccelli I, Trump A (2012). The evolving concept of cancer and metastasis stem cells. J Cell Biol, 198, 281-93. https://doi.org/10.1083/jcb.201202014
- Cabarcas SM, Mathews LA, Farrar WL (2011). The cancer stem cell niche--there goes the neighborhood. Int J Cancer, 129, 2315-27. https://doi.org/10.1002/ijc.26312
- Chen C, Benjamin MS, Sun X, et al (2006). KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int J Cancer, 118, 1346-55. https://doi.org/10.1002/ijc.21533
- Chen J, Li Y, Yu TS, et al (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 488, 522-6. https://doi.org/10.1038/nature11287
- Choi BJ, Cho YG, Song JW, et al (2006). Altered expression of the KLF4 in colorectal cancers. Pathol Res Pract, 202, 585-9. https://doi.org/10.1016/j.prp.2006.05.001
- Clarke MF, Dick JE, Dirks PB, et al (2006). Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res, 66, 9339-44. https://doi.org/10.1158/0008-5472.CAN-06-3126
- Dalerba P, Cho RW, Clarke MF (2007). Cancer stem cells: models and concepts. Annu Rev Med, 58, 267-84. https://doi.org/10.1146/annurev.med.58.062105.204854
- Dang DT, Chen X, Feng J, et al (2003). Overexpression of kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene, 22, 3424-30. https://doi.org/10.1038/sj.onc.1206413
- Dean M, Fojo T, Bates S (2005). Tumour stem cells and drug resistance. Nat Rev Cancer, 5, 275-84. https://doi.org/10.1038/nrc1590
- Dong Z, Yang L, Lai D (2013). KLF5 strengthens drug resistance of ovarian cancer stem-like cells by regulating survivin expression. Cell Prolif, 46, 425-35. https://doi.org/10.1111/cpr.12043
- Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C (2012). Defining the mode of tumour growth by clonal analysis. Nature, 488, 527-30. https://doi.org/10.1038/nature11344
- Eaton SA, Funnell AP, Sue N, et al (2008). A network of kruppellike factors (Klfs).. Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem, 283, 26937-47. https://doi.org/10.1074/jbc.M804831200
- Garvey SM, Sinden DS, Schoppee BPD, Wamhoff BR (2010). Cyclosporine up-regulates Kruppel-like factor-4 (KLF4). in vascular smooth muscle cells and drives phenotypic modulation in vivo. J Pharmacol Exp Ther, 333, 34-42. https://doi.org/10.1124/jpet.109.163949
- Gilbertson RJ, Graham TA (2012). Cancer: Resolving the stemcell debate. Nature, 488, 462-3. https://doi.org/10.1038/nature11480
- Hao J, Zhang Y, Deng M, et al (2014). MicroRNA control of epithelial-mesenchymal transition in cancer stem cells. Int J Cancer, 135, 1019-27. https://doi.org/10.1002/ijc.28761
- Ho A, Fusenig N (2011). Cancer stem cells: a promising concept and therapeutic challenge. Int J Cancer, 129, 2309. https://doi.org/10.1002/ijc.26409
- Keymoosi H, Gheytanchi E, Asgari M, Shariftabrizi A, Madjd Z (2014). ALDH1 in combination with CD44 as putative cancer stem cell markers are correlated with poor prognosis in urothelial carcinoma of the urinary bladder. Asian Pac J Cancer Prev, 15, 2013-20. https://doi.org/10.7314/APJCP.2014.15.5.2013
- King KE, Iyemere VP, Weissberg PL, Shanahan CM (2003). Kruppel-like factor 4 (KLF4/GKLF). is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem, 278, 11661-9. https://doi.org/10.1074/jbc.M211337200
- Kreso A, Dick JE (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14, 275-291. https://doi.org/10.1016/j.stem.2014.02.006
- Lapidot T, Sirard C, Vormoor J, et al (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645-8. https://doi.org/10.1038/367645a0
- Leng Z, Tao K, Xia Q, et al (2013). Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One, 8, 56082. https://doi.org/10.1371/journal.pone.0056082
- Li Y, Kong D, Ahmad A, Bao B, Sarkar FH (2013). Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett, 338, 94-100. https://doi.org/10.1016/j.canlet.2012.03.018
- Magee JA, Piskounova E, Morrison SJ (2012). Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 21, 283-96. https://doi.org/10.1016/j.ccr.2012.03.003
- McConnell BB, Yang VW (2010). Mammalian Kruppel-like factors in health and diseases. Physiol Rev, 90, 1337-81. https://doi.org/10.1152/physrev.00058.2009
- Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol, 127, 2021-36. https://doi.org/10.1083/jcb.127.6.2021
- Miller IJ, Bieker JJ (1993). A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol, 13, 2776-86. https://doi.org/10.1128/MCB.13.5.2776
- Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012). Cancer stem cells: an evolving concept. Nat Rev Cancer, 12, 133-43.
- Nishi M, Sakai Y, Akutsu H, et al (2013). Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene, 33, 643-52.
- Okuda H, Xing F, Pandey PR, et al (2013). miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res, 73, 1434-44. https://doi.org/10.1158/0008-5472.CAN-12-2037
- Oskarsson T (2013). Extracellular matrix components in breast cancer progression and metastasis. Breast, 22, 66-72. https://doi.org/10.1016/j.breast.2013.07.012
- Reya T, Morrison SJ, Clarke MF, Weissman IL (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105-11. https://doi.org/10.1038/35102167
- Sabet MN, Rakhshan A, Erfani E, Madjd Z (2014). Co-expression of putative cancer stem cell markers, CD133 and Nestin, in skin tumors. Asian Pac J Cancer Prev, 15, 8161-9. https://doi.org/10.7314/APJCP.2014.15.19.8161
- Sarig R, Rivlin N, Brosh R, et al (2010). Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med, 207, 2127-40. https://doi.org/10.1084/jem.20100797
- Schepers AG, Snippert HJ, Stange DE, et al (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337, 730-5. https://doi.org/10.1126/science.1224676
- Siegel R, Ma J, Zou Z, Jemal A (2014). Cancer Statistics, 2014. CA Cancer J Clin, 64, 104-17. https://doi.org/10.3322/caac.21220
- Tang DG (2012). Understanding cancer stem cell heterogeneity and plasticity. Cell Res, 22, 457-72. https://doi.org/10.1038/cr.2012.13
- Tetreault MP, Yang Y, Katz JP (2013). Kruppel-like factors in cancer. Nat Rev Cancer, 13, 701-13. https://doi.org/10.1038/nrc3582
- Vaira V, Faversani A, Martin NM, et al (2013). Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res, 73, 2695-705. https://doi.org/10.1158/0008-5472.CAN-12-4232
- Visvader JE, Lindeman GJ (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 8, 755-68. https://doi.org/10.1038/nrc2499
- Wang H, Yang L, Jamaluddin MS, Boyd DD (2004). The Kruppel-like KLF4 transcription factor, a novel regulator of urokinase receptor expression, drives synthesis of this binding site in colonic crypt luminal surface epithelial cells. J Biol Chem, 279, 22674-83. https://doi.org/10.1074/jbc.M401257200
- Wang X, Lu H, Li T, et al (2013). Kruppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. Am J Cancer Res, 3, 356-73.
- Wang X, Zhao J (2007). KLF8 transcription factor participates in oncogenic transformation. Oncogene, 26, 456-61. https://doi.org/10.1038/sj.onc.1209796
- Wang X, Zheng M, Liu G, et al (2007). Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res, 67, 7184-93. https://doi.org/10.1158/0008-5472.CAN-06-4729
- Wellner U, Schubert J, Burk UC, et al (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemnessinhibiting microRNAs. Nat Cell Biol, 11, 1487-95. https://doi.org/10.1038/ncb1998
- Wernig M, Meissner A, Foreman R, et al (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448, 318-24. https://doi.org/10.1038/nature05944
- Wong CW, Hou PS, Tseng SF, et al (2010). Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells, 28, 1510-7. https://doi.org/10.1002/stem.477
- Wu XQ, Huang C, He X, et al (2013). Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal, 25, 2462-8. https://doi.org/10.1016/j.cellsig.2013.08.009
- Yamanaka S (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1, 39-49. https://doi.org/10.1016/j.stem.2007.05.012
- Yang J, Weinberg RA (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell, 14, 818-29. https://doi.org/10.1016/j.devcel.2008.05.009
- Ying M, Sang Y, Li Y, et al (2011). Kruppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells, 29, 20-31. https://doi.org/10.1002/stem.561
- Yori JL, Johnson E, Zhou G, Jain MK, Keri RA (2010). Kruppellike factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem, 285, 16854-63. https://doi.org/10.1074/jbc.M110.114546
- Yori JL, Seachrist DD, Johnson E, et al (2011). Kruppel-like factor 4 inhibits tumorigenic progression and metastasis in a mouse model of breast cancer. Neoplasia, 13, 601-10. https://doi.org/10.1593/neo.11260
- Yu F, Li J, Chen H, et al (2011). Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene, 30, 2161-72. https://doi.org/10.1038/onc.2010.591
- Yu T, Chen X, Zhang W, et al (2012). Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J Biol Chem, 287, 3760-8. https://doi.org/10.1074/jbc.M111.316349
- Zhang X, Cruz FD, Terry M, Remotti F, Matushansky I (2013). Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene, 32, 2249-60. https://doi.org/10.1038/onc.2012.237
- Zheng H, Pritchard DM, Yang X, et al (2009). KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol, 296, 490-8. https://doi.org/10.1152/ajpgi.90393.2008
Cited by
- Krüppel-like factor 4 promotes high-mobility group box 1-induced chemotherapy resistance in osteosarcoma cells vol.107, pp.3, 2016, https://doi.org/10.1111/cas.12864
- Loss of KLF4 and consequential downregulation of Smad7 exacerbate oncogenic TGF-β signaling in and promote progression of hepatocellular carcinoma vol.36, pp.21, 2017, https://doi.org/10.1038/onc.2016.447
- Role of Krüppel-like factor 4 and heat shock protein 27 in cancer of the larynx vol.7, pp.5, 2017, https://doi.org/10.3892/mco.2017.1412
- Curcumin-mediated demethylation of the proximal promoter CpG island enhances the KLF4 recruitment that leads to increased expression of p21Cip1 in vitro vol.120, pp.1, 2019, https://doi.org/10.1002/jcb.27442
- The Role of KLF4 in Alzheimer’s Disease vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00325