• Title/Summary/Keyword: plates vibration

Search Result 871, Processing Time 0.036 seconds

Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account

  • Dao Minh Tien;Do Van Thom;Nguyen Thi Hai Van;Abdelouahed Tounsi;Phung Van Minh;Dao Nhu Mai
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • This work is the first to apply nonlocal theory and a variety of deformation plate theories to study the issue of forced vibration and buckling in organic nanoplates, where the effect of the drag parameter inside the structure has been taken into consideration. Whereas previous research on nanostructures has treated the nonlocal parameter as a fixed value, this study accounts for its effect, and finds that its value fluctuates with the thickness of each layer. This is also a new point that no works have mentioned for organic plates. On the foundation of the notion of potential movement, the equilibrium equation is derived, the buckling issue is handled using Navier's solution, and the forced oscillation problem is solved using the finite element approach. Additionally, a set of numerical examples exhibiting the forced vibration and buckling response of organic nanoplates are shown. These findings indicate that the nonlocal parameter and the drag parameter of the structure have a substantial effect on the mechanical responses of organic nanoplates.

Buckling and Vibration Analysis of Antisymmetric Angle-ply laminated Composite Plates using a Three-dimensional Higher-order Theory (3차원 고차이론을 이용한 역대칭 앵글-플라이를 갖는 복합재료 적층판의 좌굴 및 진동해석)

  • Lee, Won Hong;Han, Sung Cheon;Chun, Kyoung Sik;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.97-107
    • /
    • 2003
  • To obtain a more accurate response from larninated composite structures, the effect of transverse shear deformation, transverse normal strain/stress, and nonlinear variation of in-plane displacements vis-$\\grave{a}$-vis the thickness coordinate should be considered in the analysis. The improved higher-order theory was used to determine the critical buckling load and natural frequencies of laminated composite structures. Solutions of simply supported laminated composite plates and sandwiches were obtained in closed form using Navier's technique, with the results compared with calculated results using the first order and other higher-order theories. Numerical results were presented for fiber-reinforced laminates, which show the effects of ply orientation, number of layers, side-toithickness ratio, and aspects ratio.

Vibration Characteristics and Topology Optimization of a Double Damper Lock-Up Clutch in a Torque Converter System (토크컨버터 장착 이중댐퍼 체결클러치의 진동특성해석 및 위상최적화)

  • Kim, Kwang-Joong;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1129-1136
    • /
    • 2010
  • Damper springs in a drive-line absorb the impulsive torque generated when a lock-up clutch is connected directly, instead of via a fluid coupling. Design optimization and finite element analysis were performed to improve the shock- and vibration-absorption capacity of the lock-up clutch. For this purpose, a multi-body dynamics model was developed by including the main parts of a vehicle, such as an engine with a clutch, a transmission, drive shafts and wheels, and a whole mass of a vehicle. The spring constants were selected so that resonance of a system could be avoided. Damper springs were optimized on the basis of the spring constants, impulsive torques, compressed angles, spring counts, fatigue constraints, etc. Topology optimization was performed for three plates with the damper springs. The compliance was set up as an objective function, and volume fraction was fixed below 0.3. A new shape for the plates was proposed on the basis of the topology result.

Reduction Method of Acoustic Vibrating Plate Using Piezo Electric Material (압전 소자를 이용한 음향 진동 박판에 대한 제어 기법)

  • Jung, Do-Hee;Park, Seen-Ok;Kim, Woo-Young;Lee, Sang-Kee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.777-784
    • /
    • 2003
  • Acoustic response control of a corner-pinned plate using piezoelectric wafers was studied, both theoretically and experimentally Three different sizes of aluminum alloy plates were used and available ball joints were employed to hold the plate at the four corners. The plate with the largest aspect ratio showed the largest and most clear responses to the acoustic excitation in the range of frequencies (0∼200 Hz), and sound pressure levels (80∼100 dB) as predicted. The reduction of the acoustic response of the plate by piezoelectric actuator was very significant, more than expected, but abatement of the sound transmission through the plate was only slightly altered by the piezoelectric actuator. This work is an original work extending earlier work with doors excited by acoustic fields. The important difference is the used of ball joints to simulate the joints.

Static, Buckling and Free Vibration Analyses of Fibrous Composite Plate using Improved 8-Node Strain-Assumed Finite Formulation by Direct Modification (직접수정된 8절점 가정변형률 유한요소를 이용한 복합적층판의 정적, 좌굴 및 자유진동 해석)

  • Park, Won-Tae;Chun, Kyoung-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.107-114
    • /
    • 2004
  • In this paper, a simple improved 8-node finite element for the finite element analysis of fibrous composite plates is presented by using the direct modification. We drive explicit expressions of shape functions for the 8-node element with bilinear element geometry, which is modified so that it can represent any quadratic fields in Cartesian coordinates. The refined first-order shear deformation theory is proposed, which results in parabolic through-thickness distribution of the transverse shear strains and stresses from the formulation based on the third-order shear deformation theory. It eliminates the need for shear correction factors in the first-order theory. This finite element is further improved by combined use of assumed strain, modified shape function, and refined first-order theory. To show the effectiveness of our simple modification on the 8-node finite elements, numerical studies are carried out the static, buckling and free vibration analysis of fibrous composite plates.

Forced-Vibration-Based Identification of Stiffness Reduction Distribution in Thin Plates with an Arbitrary Damage Shape (임의의 손상형태를 갖는 박판의 강제진동 기반 강성저하 분포 규명)

  • Song, Yoo-Seob;Lee, Sang-Youl;Park, Tae-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • This study deals with a method to identify structural damage using the combined finite element method (FEM) and the advanced damage search technique. The novelty of this study is the application of plates with arbitrary damage shapes and their response due to the anomalies in a structure subjected to impact loading. The technique described in this paper may allow us not only to detect the stiffness distribution of the damaged areas but also to find locations and the extent of damage. To demonstrate the feasibility of the method, the algorithm is applied to a steel thin plate structures with an arbitrary damage shape. The results demonstrate the excellencies of the method from the standpoints of computation efficiency as well as its ability to investigate the arbitrary stiffness reductions.

Exact Solutions for Vibration and Buckling of Rectangular Plates Loaded at Two Simply-Supported Opposite Edges by In-Plane Moments, Free along the Other Two Edges (면내(面內) 모멘트를 받는 단순지지된 두 모서리와 자유경계인 나머지 두 모서리를 갖는 직사각형 판의 진동과 좌굴의 엄밀해)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.81-92
    • /
    • 2006
  • This paper presents exact solutions for the free vibrations and buckling of rectangular plates having two opposite, simply supported edges subjected to linearly varying normal stresses causing pure in-plane moments, the other two edges being free. Assuming displacement functions which are sinusoidal in the direction of loading (x), the simply supported edge conditions are satisfied exactly. With this the differential equation of motion for the plate is reduced to an ordinary one having variable coefficients (in y). This equation is solved exactly by assuming power series in y and obtaining its proper coefficients (the method of Frobenius). Applying the free edge boundary conditions at y=0, b yields a fourth order characteristic determinant for the critical buckling moments and vibration frequencies. Convergence of the series is studied carefully. Numerical results are obtained for the critical buckling moments and some of their associated mode shapes. Comparisons are made with known results from less accurate one-dimensional beam theory. Free vibration frequency and mode shape results are also presented. Because the buckling and frequency parameters depend upon Poisson's ratio ( V ), results are shown for $0{\leq}v{\leq}0.5$, valid for isotropic materials.

  • PDF

Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment

  • Karami, Behrouz;Shahsavari, Davood;Janghorban, Maziar;Li, Li
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.191-207
    • /
    • 2020
  • This study aims at investigating the size-dependent free vibration of porous nanoplates when exposed to hygrothermal environment and rested on Kerr foundation. Based on the modified power-law model, material properties of porous functionally graded (FG) nanoplates are supposed to change continuously along the thickness direction. The generalized nonlocal strain gradient elasticity theory incorporating three scale factors (i.e. lower- and higher-order nonlocal parameters, strain gradient length scale parameter), is employed to expand the assumption of second shear deformation theory (SSDT) for considering the small size effect on plates. The governing equations are obtained based on Hamilton's principle and then the equations are solved using an analytical method. The elastic Kerr foundation, as a highly effected foundation type, is adopted to capture the foundation effects. Three different patterns of porosity (namely, even, uneven and logarithmic-uneven porosities) are also considered to fill some gaps of porosity impact. A comparative study is given by using various structural models to show the effect of material composition, porosity distribution, temperature and moisture differences, size dependency and elastic Kerr foundation on the size-dependent free vibration of porous nanoplates. Results show a significant change in higher-order frequencies due to small scale parameters, which could be due to the size effect mechanisms. Furthermore, Porosities inside of the material properties often present a stiffness softening effect on the vibration frequency of FG nanoplates.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Characteristic Analysis of Resistance Spot Welding between Dissimilar Materials of 1.035mm Laminated Vibration Damping Steel with 35㎛ Viscoelastic Resin (35㎛ 점탄성수지가 적용된 1.035mm 제진강판의 이종소재간 저항점용접 특성분석)

  • Bae, Ki-Man;Baek, Jong-Jin;Shin, Chang-Yeul;Kim, Seung-Kyung;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.24-29
    • /
    • 2021
  • Recently, owing to the high demand for eco-friendly cars in the automotive industry, noise and vibrations have become major challenges. The use of laminated damping steel is increasing in response to these demands. Laminated damping steel is primarily used in sound insulation plates. The vibration energy is converted into thermal energy due to the viscoelastic resin being located between two steel sheets and being able to damp the vibrations when an external force, such as, noise or vibration is applied to the steel plate. Laminated damping steel is chiefly applied to dash panels in automotive body parts, and because of its structure, junction technology for bonding with other components is necessary. However, there has not been sufficient research conducted on junctions. In this study, regardless of the electrode shape, in the range of 4.0 ~ 8.0 kA welding current, the same welding force and welding time were applied which were 2.8 kN and 200 m/s (12 cycles) and the tensile shear load and nugget size were analyzed after the resistance spot welding between different materials of laminated damping steel with a thickness of 1.035 mm. The results show that in the range of 5 ~ 8 kA welding current, 1.035 mm laminated damping steel meets the MS181-15 standard, which is the technical standard of Hyundai-Kia Motors.