Acknowledgement
This research is funded by The University of Danang - University of Technology and Education under project number T2022-06-12.
References
- Abdelrahman, A., Rabab, A.S., Esen, I. and Mohamed, A.E. (2022a), "Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory", Steel Compos. Struct., 44(2), 241-256. https://doi.org/10.12989/scs.2022.44.2.241.
- Abdelrahman, A., Rabab, A.S., Esen, I. and Mohamed, A.E. (2022b), "Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load", Steel Compos. Struct., 42(6), 805-826. https://doi.org/10.12989/scs.2022.42.6.805.
- Abdelrahman, A.A., Esen, I., Daikh A.A. and Eltaher, M.A. (2021a), "Dynamic analysis of FG nanobeam reinforced by carbon nanotubes and resting on elastic foundation under moving load", Mech. Based Des. Struct. Mach., 2021, 1-24. https://doi.org/10.1080/15397734.2021.1999263.
- Abdelrhmaan, A.A., Eltaher, M.A. and Esen, I. (2021b), "Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load", Eur. Phys. J. Plus, 136, 1-21. https://doi.org/10.1140/epjp/s13360-021-01682-8.
- Alaa, A.A., Esen, I, Cevat, O., Ramy, S., Mohamed, A.E. and Amr, E.A. (2021), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
- Ardayfio, C. (2019), "Computational design of organic solar cell active layer through genetic algorithm", arXiv preprint arXiv:1910.12401.
- Bui, T.Q., Thom, V.D., Lan, H.T.T., Duc, H.D., Satoyuki, T., Dat, T.P., Thien-An, N.V., Tiantang, Y. and Sohichi, H. (2016), "On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory", Compos. Part B: Eng., 92, 218-241. http://doi.org/10.1016/j.compositesb.2016.02.048.
- Cardinaletti, I., Tim, V., Steven, N., Rob, C., Dieter, S., Jaroslav, H., Jelle, V., Dries, D., Jurgen, K., Jan, D.H., Alexis, F., Valentina, S., Thierry, C., Wouter, M., Wim, D. and Jean, V.M. (2018), "Organic and perovskite solar cells for space applications", Sol. Energy Mater. Sol. Cells, 182, 121-127. https://doi.org/10.1016/j.solmat.2018.03.024.
- Chang, Y.M. (2021), Solution-Processed Organic Solar Modules with 10% Power Conversion Efficiency, Advanced Science News. https://www.advancedsciencenews.com/solution-processed-organic-solar-modules-with-10-power-conversion-efficiency/
- Ding, H.X. and She, G.L. (2023) "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Archiv. Civil Mech. Eng., 23, 97. http://doi.org/10.1007/s43452-023-00634-6.
- Dung, N.V., Tho, N.C., Ha, N.M. and Hieu, V.T. (2021), "On the finite element model of rotating functionally graded graphene beams resting on elastic foundation", Math. Prob. Eng., 2021, 1586388. https://doi.org/10.1155/2021/1586388.
- Duc, N.D., Seung-Eock, K., Quan, T.Q., Long, D.D. and Anh, V.M. (2018), "Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell", Compos. Struct., 184, 1137-1144. https://doi.org/10.1016/j.compstruct.2017.10.064.
- Duc, D.H., Thom, D.V, Cong, P.H., Minh, P.V. and Nguyen, N.X. (2022), "Vibration and static buckling behavior of variable thickness flexoelectric nanoplates", Mech. Based Des. Struct. Mach., 2022, 1-29. https://doi.org/10.1080/15397734.2022.2088558.
- Duc, H.D., Thom, V.D., Nguyen, X.N., Pham, V.V. and Nguyen, T.T. (2021), "Multi-phase-field modelling of the elastic and buckling behaviour of laminates with ply cracks", Appl. Math. Mod., 94, 68-86. https://doi.org/10.1016/j.apm.2020.12.038.
- Doan, H.D., Ashraf, M.Z. and Do, V.T. (2022), "Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects", Euro. Phys. J. Plus., 137, 447. https://doi.org/10.1140/epjp/s13360-022-02631-9.
- Do, T.V., Bui, T.Q., Yu, T.T., Pham, D.T. and Nguyen, C.T. (2017), "Role of material combination and new results of mechanical behavior for FG sandwich plates in thermal environment", J. Comput. Sci., 21, 164-181. https://doi.org/10.1016/j.jocs.2017.06.015.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eroglu, M., Koc, M.A., Esen, I. and Kozan, R. (2022), "Train-structure interaction for high-speed trains using a full 3D train model", J. Braz. Soc. Mech. Sci. Eng., 44, 48. https://doi.org/10.1007/s40430-021-03338-1.
- Eroglu, M., Koc, M.A. and Esen, I. (2023), "Application of magnetic field to reduce the forced response of steel bridges to high speed train", Int. J. Mech. Sci., 2023, 242. https://doi.org/10.1016/j.ijmecsci.2022.108023.
- Esen, I. (2011), "Dynamic response of a beam due to an accelerating moving mass using moving finite element approximation", Math. Compos. Appl., 16(1), 171-182. https://doi.org/10.3390/mca16010171.
- Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Fin. Elem. Anal. Des., 66, 26-35. https://doi.org/10.1016/j.finel.2012.11.005.
- Esen, I. (2017), "A modified FEM for transverse and lateral vibration analysis of thin beams under a mass moving with a variable acceleration", Latin Am. J. Sol. Struct., 14, 485-511. https://doi.org/10.1590/1679-78253180.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9.
- Esen, I., Ozarpa, C. and Eltaher, M.A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552.
- Esen, I., Abdelrhmaan, A.A. and Eltaher, M.A. (2021b), "Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields", Eng. Compos., 38, 3463-3482. https://doi.org/10.1007/s00366-021-01389-5.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Compos., 38, 2413-2429. https://doi.org/10.1007/s00366-020-01212-7.
- Esen, I. and Ozmen, R. (2022), "Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates", Mech. Based Des. Struct. Mach., 2022, 1-38. https://doi.org/10.1080/15397734.2022.2152045.
- Esmaeili, J. and Mahdi, G. (2022), "Multi-scale finite element investigations into the flexural behavior of lightweight concrete beams partially reinforced with steel fiber", Comput. Concrete, 29(6), 393-405. https://doi.org/10.12989/cac.2022.29.6.393.
- Esen, I. and Ozmen, R. (2022), "Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity", Compos. Struct., 296, 115878. https://doi.org/10.1016/j.compstruct.2022.115878.
- Faisal, A.T., Mohamed, A.K., Muzamal, H., Gar, A.N.I.M. and Emad, G. (2021), "Computer visualization approach for rotating FG shell: Assessment with ring supports", Comput. Concrete, 28(6), 559-557. https://doi.org/10.12989/cac.2021.28.6.559.
- Gui-Lin, S. (2021a), "Guided wave propagation of porous functionally graded plates: The effect of thermal loadings", J. Therm. Stress., 44(10), 1289-1305. https://doi.org/10.1080/01495739.2021.1974323.
- Gui-Lin, S., Hai-Bo, L. and Behrouz, K. (2021b), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Gui-Lin, S. and Hao-Xuan, D. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mech. Sin., 39, 522392. https://doi.org/10.1007/s10409-022-22392-x
- Hai, T., Al-Masoudy, M.M., Alsulamy, S., Ouni, M.H.E. Ayvazyan, A. and Kumar, A. (2023), "Moving load analysis on cross/angle-ply laminated composite nanoplates resting on viscoelastic foundation", Compos. Struct., 305, 116540. https://doi.org/10.1016/j.compstruct.2022.116540.
- Hamed, M.K. and Masoud, T. (2022), "A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips", Adv. Nano Res., 12(4), 427-440. https://doi.org/10.12989/anr.2022.12.4.427.
- Hao-Xuan, D., Yi-Wen, Z. and Gui-Lin, S. (2022), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
- Hao-Xuan, D. and Gui-Lin, S. (2023), "Nonlinear primary resonance behavior of graphene platelet-reinforced metal foams conical shells under axial motion", Nonlinear Dyn., 2023, 1-30. https://doi.org/10.1007/s11071-023-08564-x.
- Hao-Xuan, D., Eltaher, M.A. and She, G.L. (2023), "Nonlinear low-velocity impact of graphene platelets reinforced metal foams cylindrical shell: Effect of spinning motion and initial geometric imperfections", Aerosp. Sci. Technol., 140, 108435. https://doi.org/10.1016/j.ast.2023.108435.
- Hoang-Nam, N., Canh, T.N., Thanh, T.T., Ke, T.V., Phan, V.D. and Do, V.T. (2019), "Finite element modelling of a composite shell with shear connectors", Symmetry, 11(4), 527. https://doi.org/10.3390/sym11040527.
- Hoppe, H. and Sariciftci, N.S. (2004), "Organic solar cells: An overview", J. Mater. Res., 19(7), 1924-1945. https://doi.org/10.1557/JMR.2004.0252.
- Koc, M.A., Esen, I. and Eroglu, M. (2023), "Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity", Mech. Adv. Mat. Struct., 2023, 1-23. https://doi.org/10.1080/15376494.2023.2199412.
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
- Li, Q., Wu, D., Gao, W., Tin-Loi, F., Liu, Z. and Cheng, J. (2019), "Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory", Eur. J. Mech. A/Solids, 78, 103852. https://doi.org/10.1016/j.euromechsol.2019.103852.
- Li, Q., Wu, D., Gao, W. and Tin-Loi, F. (2020), "Size-dependent instability of organic solar cell resting on Winkler-Pasternak elastic foundation based on the modified strain gradient theory", Int. J. Mech. Sci., 177, 105306. https://doi.org/10.1016/j.ijmecsci.2019.105306.
- Liu, S., Wang, K., Wang, B., Li, J. and Zhang, C. (2022), "Size effect on thermo-mechanical instability of micro/nano scale organic solar cells", Meccanica, 57(1), 87-107. https://doi.org/10.1007/s11012-021-01411-6.
- Liang, Z. and Tzu-Hsing, K. (2022), "Bending and buckling of spinning FG nanotubes based on NSGT", Comput. Concrete, 30(4), 243-256. https://doi.org/10.12989/cac.2022.30.4.243.
- Luat, D.T., Thom, D.V., Thanh, T.T., Minh, P.V., Ke, T.V. and Vinh, P.V. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 55-71. https://doi.org/10.12989/anr.2021.11.1.055.
- Loghman, E., Kamali, A., Bakhtiari-Nejad, F. and Abbaszadeh, M. (2021), "Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam", Appl. Math. Mod., 92, 297-314. https://doi.org/10.1016/j.apm.2020.11.011.
- Lu, L., Gui-Lin, S. and Xingming, G. (2021), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.
- Mashhour, A.A., Esen, I., Alaa A.A., Azza, M.A. and Mohamed, A.E. (2022) "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231.
- Minh, P.V. and Ke, T.V. (2022), "A comprehensive study on mechanical responses of non-uniform thickness piezoelectric nanoplates taking into account the flexoelectric effect", Arab J. Sci. Eng., 2022, 1-26. https://doi.org/10.1007/s13369-022-07362-8.
- Nehm, F., Pfeiffelmann, T., Dollinger, F., Muller-Meskamp, L. and Leo, K. (2017), "Influence of aging climate and cathode adhesion on organic solar cell stability", Sol. Energy Mater. Sol. Cells, 168, 1-7. https://doi.org/10.1016/j.solmat.2017.03.037.
- Nam, V.H., Doan, D.H., Khoa, N.M., Do, T.V. and Tran, H.T. (2019a), "Phase-field buckling analysis of cracked stiffened functionally graded plates", Compos. Struct., 217, 50-59. https://doi.org/10.1016/j.compstruct.2019.03.014.
- Nam, N.H., Tan, T.C., Luat, D.T., Phan, V.D., Thom, D.V. and Minh, P.V. (2019b), "Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory", Mater., 12(8), 1262. http://dx.doi.org/10.3390/ma12081262.
- Naderi, A. (2022), "The nonlocal parameter for three-dimensional nonlocal elasticity analyses of square graphene sheets: An exact buckling analysis", Proc. Inst. Mech. Eng. Part N, 236(1-2), 41-48. https://doi.org/10.1177/2397791421102982.
- Nguyen, H.N., Nguyen, T.Y., Tran, V.K., Tran, T.T., Nguyen, T.T., Phan, V.D. and Thom, D.V. (2019), "A finite element model for dynamic analysis of triple-layer composite plates with layers connected by shear connectors subjected to moving load", Mater., 12(4), 598. https://doi.org/10.3390/ma12040598.
- Nguyen, C.T., Thom, D.V., Pham, H.C., Ashraf, M.Z., Duc, H.D. and Phung, V.M. (2023), "Finite element modeling of the bending and vibration behavior of three-layer composite plates with a crack in the core layer", Compos. Struct., 305, 116529. https://doi.org/10.1016/j.compstruct.2022.116529.
- Jin, Q. and Ren, Y. (2022), "Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre- and post-buckled FG nanotubes", Commun. Nonlinear Sci. Numer. Simul., 104, 106044. https://doi.org/10.1016/j.cnsns.2021.106044.
- Thai, L.M., Luat, D.T., Phung, V.B., Minh, P.V. and Thom, D.V. (2022), "Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects", Arch. Appl. Mech., 92(1), 163-182. http://doi.org/10.1007/s00419-021-02048-3.
- Thom, D.V., Duc, D.H., Minh, P.V. and Tung, N.S. (2020), "Finite element modelling for free vibration response of cracked stiffened fgm plates", Vietnam J. Sci. Technol., 58(1), 119-129. http://doi.org/10.15625/2525-2518/58/1/14278.
- Thom, V.D., Duc, H.D., Nguyen, C.T. and Nguyen, D.D. (2022), "Thermal buckling analysis of cracked functionally graded plates", Int. J. Struct. Stab. Dyn., 22(8), 2250089. https://doi.org/10.1142/S0219455422500894.
- Thom, V.D, Vinh, V.P. and Hoang, N.N. (2020), "On the development of refined plate theory for static bending behavior of functionally graded plates", Math. Prob. Eng., 2020, 2836763. https://doi.org/10.1155/2020/2836763.
- Thom, D.V., Doan, D.H., Duc, N.D. and Bui, T.Q. (2017), "Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface", Compos. Struct., 182, 542-548. http://doi.org/10.1016/j.compstruct.2017.09.059.
- Tavakkoli, M., Ajeian, R., Badrabadi, M.N., Ardestani, S.S., Feiz, S.M.H. and Nasab, K.E. (2011), "Progress in stability of organic solar cells exposed to air", Sol. Energy Mater. Sol. Cells, 95(7), 1964-1969. https://doi.org/10.1016/j.solmat.2011.01.029.
- Tuyen, B.V. (2022), "Free vibration behaviors of nanoplates resting on viscoelastic medium", Arab. J. Sci. Eng., 2022, 1-14. https://doi.org/10.1007/s13369-022-07500-2.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.
- Tuan, L.T., Dung, N.T., Thom, D.V., Minh, P.V. and Zenkour, A. (2021), "Propagation of non-stationary kinematic disturbances from a spherical cavity in the pseudo-elastic cosserat medium", Eur. Phys. J. Plus, 136, 1199. https://doi.org/10.1140/epjp/s13360-021-02191-4.
- Tien, D.M., Thom, D.V., Minh, P.V., Tho, N.C., Doan, T.N. and Mai, D.N. (2023), "The application of the nonlocal theory and various shear strain theories for bending and free vibration analysis of organic nanoplates", Mech. Based Des. Struct. Mach., 2023, 1-23. https://doi.org/10.1080/15397734.2023.2186893.
- Tinh, Q.B., Duc, H.D., Thom, V.D., Sohichi, H. and Nguyen, D.D. (2016), "High frequency modes meshfree analysis of Reissner-Mindlin plates", J. Scie.: Adv. Mater. Dev., 1(3), 400-412. https://doi.org/10.1016/j.jsamd.2016.08.005.
- Tran, N.D., Thom, D.V., Thanh, N.T., Chuong, P.V., Tho, N.C., Ta, N.T. and Nguyen, H.N. (2020), "Analysis of stress concentration phenomenon of cylinder laminated shells using higher-order shear deformation Quasi-3D theory", Compos. Struct., 232, 111526. https://doi.org/10.1016/j.compstruct.2019.111526.
- Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40, 137-146. https://doi.org/10.2514/3.15006.
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.
- Sobhy, M. (2014), "Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions", J. Mech., 30, 443-453. https://doi.org/10.1017/jmech.2014.46.
- Sobhy, M. and Ahmed, F.R. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", Int. J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089.
- Song, M., Sritawat, K. and Jie, Y. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. http://doi.org/10.1016/j.compstruct.2016.09.070.
- O'Connor, T.F., Aliaksandr, V.Z., Suchol, S., Adam, D.P., Cameron, D.W., Mare, I.D., Eric, J.S. and Darren, J.L. (2016), "Wearable organic solar cells with high cyclic bending stability: Materials selection criteria", Sol. Energy Mater. Sol. Cells, 144, 438-444. https://doi.org/10.1016/j.solmat.2015.09.049.
- Ozmen, R., Kilic, R. and Esen, I. (2022), "Thermomechanical vibration and buckling response of nonlocal strain gradient porous fg nanobeams subjected to magnetic and thermal fields", Mech. Adv. Mater. Struct., 2022, 1-20. https://doi.org/10.1080/15376494.2022.2124000.
- Pham, T.D., Doan, T.L. and Do, V.T. (2016), "Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory", Viet. J. Mech., 38(2), 103-122. https://doi.org/10.15625/0866-7136/38/2/6730.
- Pham, T.D., Pham, Q.H., Phan, V.D., Nguyen, H.N. and Do, V.T. (2019), "Free vibration analysis of functionally graded shells using an edge-based smoothed finite element method", Symmetry, 11(5), 684. https://doi.org/10.3390/sym11050684.
- Pei, Y.L., Geng, P.S. and Li, L.X. (2018), "A modified higher-order theory for FG beams", Eur. J. Mech. A/Solids, 72, 186-197. https://doi.org/10.1016/j.euromechsol.2018.05.008.
- Quang, D.V., Doan T.N., Luat, D.T. and Thom, D.V. (2022), "Static analysis and boundary effect of FG-CNTRC cylindrical shells with various boundary conditions using quasi-3D shear and normal deformations theory", Struct., 44, 828-850. https://doi.org/10.1016/j.istruc.2022.08.039.
- Vu, H.N., Nam, N.H., Vinh, P.V., Khoa, D.N., Thom, D.V. and Minh, P.V. (2019), "A new efficient modified first-order shear model for static bending and vibration behaviors of two-layer composite plate", Adv. Civil Eng., 2019, 2174080. https://doi.org/10.1155/2019/2174080.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yi-Wen, Z., Gui-Lin, S. and Hao-Xuan, D. (2023), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A/Solids, 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Yi-Wen, Z. and She, G.L. (2023), "Nonlinear primary resonance of axially moving functionally graded cylindrical shells in thermal environment", Mech. Adv. Mater. Struct., 2023, 1-13. https://doi.org/10.1080/15376494.2023.2180556.
- Yu, T., Tinh, Q.B., Shuohui, Y., Duc, H.D., Wu, C.T., Thom, V.D. and Satoyuki, T. (2016), "On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis", Compos. Struct., 136, 684-695. http://dx.doi.org/10.1016/j.compstruct.2015.11.002.
- Zhang, Y.W. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlinear Dyn., 111, 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
- Wan, P.H., Al-Furjan, M.S.H., Kolahchi, R. and Shan, L. (2023), "Application of DQHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming CNTs' waviness and agglomeration", Mech. Syst. Sign. Proc., 189, 110064. https://doi.org/10.1016/j.ymssp.2022.110064.
- Wu, Z., Zhang, Y. and Huan, Z. (2019), "Solving post-buckling characteristic of thermal-resistance films attached to glass facade via an optimization method", Int. J. Struct. Stab. Dyn., 19(6), 2019. https://doi.org/10.1142/S0219455419500688.