• Title/Summary/Keyword: plate structures

Search Result 2,406, Processing Time 0.024 seconds

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

Analytical Studies on the Steel Plate-Concrete Structures under Compressive Load (압축력을 받는 강판-콘크리트 구조의 해석적 고찰)

  • Choi, Byong Jeong;Han, Hong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.269-278
    • /
    • 2008
  • The primary object of the paper is to understand the compressive buckling characteristics of steel-concrete structures through the finite element analysis. The buckling pattern, compressive strength and stiffness of the steel plate concrete structures were investigated by the FEM analysis using the variations of B/t ratios and stud pitches. The investigation was focused on steel plate concrete structures with and without ribs placed on the surface of steel plates. The results of the FEM analysis were compared with the previous results from the theoretical equations. Conclusively, the buckling of the steel plate concrete structures occurred in the transverse direction of the loading direction. The stiffness of the steel plate concrete structure with ribs is greater than the one without the stiffened rib. The compressive strength in the FEM analysis is similar to that of JEAG 4681 and it showed 20% greater value than that of the proposed equations.

An Analysis of the Farm Silo Supported by Ground (지반과 구조물 사이의 상호작용을 고려한 농업용 사이로의 해석에 관한 연구(IV) -제 4 보 관행설계법과의 비교)

  • 조진구;조현영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.44-54
    • /
    • 1988
  • This study was carried out to investigate the applicability of the conventional design method for ground supported circular cylindrical shell structures. For this purpose, the ensiled farm silo was adopted as a model structures. Herein, the conventional design method was based on the assumption that such structures are clamped at the bottom edges or the ground pressure is independent of the deflection at the surface. In the present paper, the applicability of above assumption was checked out by comparison with an exact method considering soil-structure interaction. Some results of numerical calculation show us ; When the ground is very hard, for example Winkler's constant k is larger than 100 kg / cm$^2$ / cm, or the bottom plate of structures has a infinitely stiffness, for example the bottom plate thickness is larger than 100 cm, the sectional forces, obtained from the conventional method at any wall of structures resting on an elastic foundation, can used for design purpose. Therefore, if the above condition is satisfied then the conventional assumptions can be justified for the design purpose. In this case, the assumption that such structures are fixed at the lower edges was more realistic than the assumption that the reaction pressure acting on structures is uniformly disributed since the accuracy of results of the analysis by the former assumption was higher than that obtained from the latter assumption. But the sectional forces in the bottom plate resting on ground directly could not be evaluate correctly by the conventional method.

  • PDF

Buckling analysis of steel plates in composite structures with novel shape function

  • Qin, Ying;Luo, Ke-Rong;Yan, Xin
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.405-413
    • /
    • 2020
  • Current study on the buckling analysis of steel plate in composite structures normally focuses on applying finite element method to derive the buckling stress. However, it is time consuming, computationally complicated and tedious for general use in design by civil engineers. Therefore, in this study an analytical study is conducted to predict the buckling behavior of steel plates in composite structures. Hand calculation method was proposed based on energy principle. Novel buckling shapes with biquadratic functions along both loaded and unloaded direction were proposed to satisfy the boundary condition. Explicit solutions for predicting the critical local buckling stress of steel plate is obtained based on the Rayleigh-Ritz approach. The obtained results are compared with both experimental and numerical data. Good agreement has been achieved. Furthermore, the influences of key factors such as aspect ratio, width to thickness ratio, and elastic restraint stiffness on the local buckling performance are comprehensively discussed.

Structural Performance of Reinforced Concrete Flat Plate Buildings Subjected to Fire

  • George, Sara J.;Tian, Ying
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.111-121
    • /
    • 2012
  • The research presented in this paper analytically examines the fire performance of flat plate buildings. The modeling parameters for the mechanical and thermal properties of materials are calibrated from relevant test data to minimize the uncertainties involved in analysis. The calibrated models are then adopted to perform a nonlinear finite element simulation on a flat plate building subjected to fire. The analysis examines the characteristics of slab deflection, in-plane deformation, membrane force, bending moment redistribution, and slab rotational deformation near the supporting columns. The numerical simulation enables the understanding of structural performance of flat plate under elevated temperature and, more importantly, identifies the high risk of punching failure at slab-column connections that may trigger large-scale failure in flat plate structures.

Vibration Source Contribution Analysis of Plate Structure Using Independent Component Analysis (독립성분분석을 이용한 평판구조물의 진동원 기여도 분석)

  • Kim, Kook-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.70-76
    • /
    • 2012
  • The independent component analysis (ICA) technique is a source identification method that uses statistical independence to separate source signals from measured signals. It has been successfully applied to various fields such as medical care and communication. In this study, the ICA technique was adopted to analyze the vibration source contribution of plate structures. The theory of the ICA technique is introduced and the procedure of the vibration source contribution analysis based on the ICA technique is proposed. To investigate the applicability of the proposed method to plate structures, numerical examples are presented for a rectangular plate under harmonic force excitations. The results show that the proposed method could become an effective tool for the vibration source contribution analysis of a plate structure.

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.

A Study on the Secondary Buckling Behavior of Ship Plate (선체판부재의 2차좌굴거동에 관한 연구)

  • 고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.

  • PDF

Vibration and Buckling Analysis of Laminated Composite Plates using RM Isogeometric General Plate Element (RM 등기하 판요소를 이용한 적층판의 자유진동 및 선형좌굴 해석)

  • Kim, Ha-Ryong;Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.59-68
    • /
    • 2014
  • A study on the vibration and buckling analyses of laminated composite plates is described in this paper. In order to carry out the analyses of laminated composite plates, a NURBS-based isogeometric general plate element based on Reissner-Mindlin (RM) theory is developed. The non-uniform rational B-spline (NURBS) is used to represent the geometry of plate and the unknown displacement field and therefore, all terms required in this element formulation are consistently derived by using NURBS basis function. Numerical examples are conducted to investigate the accuracy and reliability of the present plate element. From numerical results, the present plate element can produce the isogeometric solutions with sufficient accuracy. Finally, the present isogeometric solutions are provided as future reference solutions.

Seismic Performance Evaluation of flat Plate Structures Retrofitted with Steel Plates and Braces (강판과 가새로 보강된 무량판 구조물의 내진 성능 평가)

  • Shin, Woo-Seung;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.325-330
    • /
    • 2008
  • In this study 3- and 6-story flat plate structures designed only for gravity load are retrofitted with steel plates and braces and their seismic performances are evaluated to verify the effect of seismic retrofit. According to the analysis results obtained from nonlinear static analysis both the strength and stiffness are significantly enhanced as a result of the seismic retrofit. When buckling-restrained braces are used instead of conventional braces, the structures show more ductile behavior, especially in the 3-story structure.

  • PDF