Acknowledgement
This work is sponsored by the Natural Science Foundation of Jiangsu Province (Grant No. BK20170685), and the National Key Research and Development Program of China (Grant No. 2017YFC0703802).
References
- Asgarian, B., Khazaee, H. and Mirtaheri, M. (2012), "Performance evaluation of different types of steel moment resisting frames subjected to strong ground motion through incremental dynamic analysis", Int. J. Steel Struct., 12(3), 363-379. https://doi.org/10.1007/s13296-012-3006-6.
- Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
- Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/scs.2017.25.3.257.
- Bridge, R.Q. and O'Shea, M.D. (1998), "behaviour of thin-walled steel box sections with or without internal restraint", J. Constr. Steel Res., 47, 73-91. https://doi.org/10.1016/S0143-974X(98)80103-X.
- Bleich, F. (1952). Buckling strength of metal structures, McGraw-Hill (New York).
- Cai, J. and Long, Y.L. (2009), "Local buckling of steel plates in rectangular CFT columns with binding bars", J. Constr. Steel Res., 65, 965-972. https://doi.org/10.1016/j.jcsr.2008.07.025.
- Dong, J.H., Ma, X., Zhuge, Y. and Mills, J.E. (2017), "Shear buckling analysis of laminated plates on tensionless elastic foundations", Steel Compos. Struct., 24(6), 697-709. https://doi.org/10.12989/scs.2017.24.6.697.
- Gheidi, A., Mirtaheri, M., Zandi, A.P. and Alanjari, P. (2011), "Effect of filler material on local and global behaviour of buckling-restrained braces", Struct. Des. Tall Spec.l Build., 20(6), 700-710. https://doi.org/10.1002/tal.555.
- Jana, P. (2016), "Optimal design of uniaxially compressed perforated rectangular plate for maximum buckling load", Thin Wall. Struct., 103, 225-230. https://doi.org/10.1016/j.tws.2015.12.027.
- Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419.
- Kanishchev, R. and Kvocak, V. (2019), "Local buckling of rectangular steel tubes filled with concrete", Steel Compos. Struct., 31(2), 201-216. https://doi.org/10.12989/scs.2019.31.2.201.
- Kim, H.S., Park, Y.M., Kim, B.J. and Kim, K. (2018), "Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending", Struct. Eng. Mech., 65(2), 141-154. https://doi.org/10.12989/sem.2018.65.2.141.
- Kolahdouzan, F., Arani, A.G. and Abodollahian, M. (2018), "Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate", Steel Compos. Struct., 26(3), 273-287. https://doi.org/10.12989/scs.2018.26.3.273.
- Liang, Q.Q., Uy, B. and Liew, J.Y.R. (2007), "Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns", J. Constr. Steel Res., 63, 396-405. https://doi.org/10.1016/j.jcsr.2006.05.004.
- Long, Y.L., Wan, J. and Cai, J. (2016), "Theoretical study on local buckling of rectangular CFT columns under eccentric compression", J. Constr. Steel Res., 120, 70-80. https://doi.org/10.1016/j.jcsr.2015.12.029.
- Li, L.Z., Jiang, C.J., Jia, L.J.and Lu, Z.D. (2016), "Local buckling of bolted steel plates with different stiffener configuration", Eng. Struct., 119, 186-197. https://doi.org/10.1016/j.engstruct.2016.03.053.
- Millar, F. and Mora, D. (2015), "A finite element method for the buckling problem of simply supported Kirchhoff plates", J. Comput. Appl. Math., 286, 68-78. https://doi.org/10.1016/j.cam.2015.02.018.
- Mirtaheri, M., Gheidi, A., Zandi, A.P., Alanjari, P. and Samani, H.R. (2011), "Experimental optimization studies on steel core lengths in buckling restrained braces", J. Constr. Steel Res., 67(8), 1244-1253. https://doi.org/10.1016/j.jcsr.2011.03.004.
- Mirtaheri, M., Amini, M. and Khorshidi, H. (2017),. "Incremental dynamic analyses of concrete buildings reinforced with shape memory alloy", Steel Compos. Struct., 23(1), 95-105. https://doi.org/10.12989/scs.2017.23.1.095.
- Mirtaheri, M., Sehat, S. and Nazeryan, M. (2018), "Improving the behavior of buckling restrained braces through obtaining optimum steel core length", Struct. Eng. Mech., 65(4), 401-408. https://doi.org/10.12989/sem.2018.65.4.401.
- Mirtaheri, M., Emami, F., Zoghi, M.A. and Salkhordeh, M. (2019). "Mitigation of progressive collapse in steel structures using a new passive connection", Struct. Eng. Mech., 70(4), 381-394. https://doi.org/10.12989/sem.2019.70.4.381.
- Mo, S.X., Zhao, R.D. and Zhong, X.G. (2004), "Local buckling research on concrete filled square steel box member", J. Hunan Uni. Sci. Tech., 19, 43-46. https://doi.org/10.3969/j.issn.1672-9102.2004.03.011
- Panahandeh-Shahraki, D., Mirdamadi, H.R. and Vaseghi, O. (2015), "Thermoelastic buckling analysis of laminated piezoelectric composite plates", Int. J. Mech. Mater. Des., 11(4), 371-385. https://doi.org/10.1007/s10999-014-9284-8.
- Qin, Y., Lu, J.Y. and Cao, S. (2017), "Theoretical study on local buckling of steel plate in concrete-filled tube column under axial compression", ISIJ Int., 57(9), 1645-1651. http://dx.doi.org/10.2355/isijinternational.ISIJINT-2016-755.
- Qin, Y., Du, E.F., Li, Y.W. and Zhang, J.Z. (2018a), "Local buckling of steel plates in composite structures under combined bending and compression", ISIS Int., 58(11), 2133-2141. https://doi.org/10.2355/isijinternational.ISIJINT-2018-202
- Qin, Y., Shu, G.P., Du, E.F. and Lu, R.H. (2018b), "Buckling analysis of elastically-restrained steel plates under eccentric compression", Steel Compos. Struct., 29(3), 379-389. https://doi.org/10.12989/scs.2018.29.3.379.
- Samani, H.R., Mirtaheri, M., Zandi, A.P. and Bahai, H. (2014), "The effects of dynamic loading on hysteretic behavior of frictional dampers", Shock Vib., 2014, 181534. https://doi.org/10.1155/2014/181534.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. https://doi.org/10.12989/scs.2019.32.2.173.
- Soltani, K., Bessaim, A., Houari, M.S.A., Kaci, A., Benguediab, M., Tounsi, A. and Alhodaly, M.S. (2019), "A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations", Steel Compos. Struct., 30(1), 13-29. https://doi.org/10.12989/scs.2019.30.1.013.
- Stollenwerk, K. and Wagner, A. (2015), "Optimality conditions for the buckling of a clamped plate", J. Math. Anal. Appl., 432(1), 254-273. https://doi.org/10.1016/j.jmaa.2015.06.035.
- Timoshenko, S.P., and Gere, J.M. (1961). Theory of Elastic Stability, 2nd edition, Mcgraw-Hill (New York).
- Uy, B. (1998), "Local and post-local buckling of concrete-filled steel welded box columns", J. Constr. Steel Res., 47, 47-72. https://doi.org/10.1016/S0143-974X(98)80102-8.
- Uy, B. (2001), "Local and postlocal buckling of fabricated steel and composite cross sections." J. Struct. Eng., 127, 666-677. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(666)
- Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
- Zoghi, M.A. and Mirtaheri, M. (2016), "Progressive collapse analysis of steel building considering effects of infill panels", Struct. Eng. Mech., 59(1), 59-82. https://doi.org/10.12989/sem.2016.59.1.059.
Cited by
- Mechanical and thermal buckling analysis of laminated composite plates vol.40, pp.5, 2020, https://doi.org/10.12989/scs.2021.40.5.697