• 제목/요약/키워드: plate structures

검색결과 2,406건 처리시간 0.023초

Energetics of In-plane Motions in Coupled Plate Structures

  • Park, Young-Ho;Park, Chang Hyun
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.428-435
    • /
    • 2020
  • Energy flow analysis (EFA) has been used to predict the frequency-averaged vibrational responses of built-up structures at high frequencies. In this study, the frequency-averaged exact energetics of the in-plane motions of the plate were derived for the first time by solving coupled partial differential equations. To verify the EFA for the in-plane waves of the plate, numerical analyses were performed on various coupled plate structures. The prediction results of the EFA for coupled plate structures were shown to be accurate approximations of the frequency-averaged exact energetics, which were obtained from classical displacement solutions. The accuracy of the results predicted via the EFA increased with an increase in the modal density, regardless of various structural parameters. Therefore, EFA is an effective technique for predicting the frequency-averaged vibrational responses of built-up structures in the high frequency range.

A new method to detect cracks in plate-like structures with though-thickness cracks

  • Xiang, Jiawei;Nackenhorst, Udo;Wang, Yanxue;Jiang, Yongying;Gao, Haifeng;He, Yumin
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.397-418
    • /
    • 2014
  • In this paper, a simple two-step method for structural vibration-based health monitoring for beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet transform is employed to extract crack singularity locations from mode shape and support vector regression (SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked plate-like structures using a simple formula. The crack severity detection database can be easily obtained with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage of interval wavelet transform and SVR are addressed.

강성계수의 전달에 의한 평판 구조물의 구조해석 (Structural Analysis of Plate Structures by Transfer of Stiffness Coefficient)

  • 최명수
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.92-97
    • /
    • 2007
  • It is important to compute the structural analysis of plate structures in structural design. In this paper, the author uses the finite element-transfer stiffness coefficient method (FE-TSCM) for the structural analysis of plate structures. The FE-TSCM is based on the concept of the successive transmission of the transfer stiffness coefficient method and the modeling technique of the finite element method (FEM). The algorithm for in-plane structural analysis of a rectangular plate structure is formulated by using the FE-TSCM. In order to confirm the validity of the FE-TSCM for structural analysis of plate structures, two numerical examples for the in-plane structural analysis of a plate with triangular elements and the bending structural analysis of a plate with rectangular elements are computed. The results of the FE-TSCM are compared with those of the FEM on a personal computer.

  • PDF

보/평판 점연성구조의 파동전달해석 (Wave Transmission Analysis of Beam/Plate Point-Coupled Structures)

  • 서성훈;홍석윤;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.457-467
    • /
    • 2004
  • Wave Transmission analysis is one of methods for power transmission and reflection coefficients in coupled infinite structures. This paper focuses the wave transmission analysis of point coupled structures among semi-infinite beams and infinite thin plates considering all kinds of waves. It is supposed that the junction through the beams and plates is an identical spot and no point of contact exist except the spot. The boundary conditions are applied at the spot for continuities of 6 DOF displacements and 6 DOF force equilibriums, and then wave fields are obtained in the coupled structures. Since wave components in plate field are simplified using asymptotic expressions of Henkel functions, the displacements and forces at the plate junction can be simply expressed with magnitudes of the wave components. The wave fields according to incident waves gives the power transmission coefficients in beam/plate point coupled structures. For both coupled structures with a beam vertically and obliquely joined to a plate, power transmission analysis is performed and the analysis results are compared and examined.

  • PDF

Numerical study of dynamic buckling for plate and shell structures

  • Liu, Z.S.;Lee, H.P.;Lu, C.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.241-257
    • /
    • 2005
  • A numerical approach combining the finite element method with two different stability criteria namely the Budiansky and the phase-plane buckling criteria is used to study the dynamic buckling phenomena of plate and shell structures subjected to sudden applied loading. In the finite element analysis an explicit time integration scheme is used and the two criteria are implemented in the Finite Element analysis. The dynamic responses of the plate and shell structures have been investigated for different values of the plate and shell imperfection factors. The results indicate that the dynamic buckling time, which is normally considered in predicting elasto-plastic buckling behavior, should be taken into consideration with the buckling criteria for elastic buckling analysis of plate and shell structures. By selecting proper control variables and incorporating them with two dynamic buckling criteria, the unique dynamic buckling load can be obtained and the problems of ambiguity and contradiction of dynamic buckling load of plate and shell structure can be resolved.

Performance evaluation of wavelet and curvelet transforms based-damage detection of defect types in plate structures

  • Hajizadeh, Ali R.;Salajegheh, Javad;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.667-691
    • /
    • 2016
  • This study focuses on the damage detection of defect types in plate structures based on wavelet transform (WT) and curvelet transform (CT). In particular, for damage detection of structures these transforms have been developed since the last few years. In recent years, the CT approach has been also introduced in an attempt to overcome inherent limitations of traditional multi-scale representations such as wavelets. In this study, the performance of CT is compared with WT in order to demonstrate the capability of WT and CT in detection of defect types in plate structures. To achieve this purpose, the damage detection of defect types through defect shape in rectangular plate is investigated. By using the first mode shape of plate structure and the distribution of the coefficients of the transforms, the damage existence, the defect location and the approximate shape of defect are detected. Moreover, the accuracy and performance generality of the transforms are verified through using experimental modal data of a plate.

Wind load characteristics of large billboard structures with two-plate and three-plate configurations

  • Wang, Dahai;Chen, Xinzhong;Li, Jie;Cheng, Hao
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.703-721
    • /
    • 2016
  • This paper presents a wind tunnel study of wind loads of the large billboard structures with two-plate and three-plate configurations. Synchronous dynamic pressures on the surfaces of plates are measured, and the characteristics of local pressures, integrated forces on each individual plate and on the overall structures are investigated. The influences of wind direction and plate configuration on wind load characteristics, and the contributions of overall crosswind load and torque to the stress responses are examined. The results showed that the wind load characteristics of windward plate in both two- and three-plate configurations are very similar. The contribution of overall crosswind load makes the total resultant force from both alongwind and crosswind loads less sensitive to wind direction in the case of three-plate configuration. The overall torque is lower than the value specified in current codes and standards, and its contribution is less significant in both two-plate and three-plate configurations.

Unified equivalent frame method for flat plate slab structures under combined gravity and lateral loads - Part 1: derivation

  • Kim, Kang Su;Choi, Seung-Ho;Ju, Hyunjin;Lee, Deuck Hang;Lee, Jae-Yeon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.719-733
    • /
    • 2014
  • The equivalent frame method (EFM) is widely used for the design of two-way reinforced concrete slab structures, and current design codes of practice permit the application of the EFM in analyzing the flat plate slab structures under gravity and lateral loads. The EFM was, however, originally developed for the flat plate structures subjected to gravity load, which is not suitable for lateral loading case. Therefore, this study, the first part of series research paper, proposed the structural analysis method for the flat plate slab structures under the combined gravity and lateral loads, which is named as the unified equivalent frame method (UEFM). In the proposed method, some portion of rotation induced in the torsional member is distributed to the flexibility of the equivalent columns, and the remaining portion is contributed to that of the equivalent slabs. In the consecutive companion paper, the proposed UEFM is verified by comparing with test results of multi-span flat plate structures. Also, a simplified nonlinear push-over analysis method is proposed, and verified by comparing to test results.

리브 보강 유무에 따른 강판-콘크리트 구조의 압축거동 (Compression Behavior of Steel Plate-Concrete Structures for both Stiffened and Nonstiffened structures by Rib)

  • 최병정;한홍수;한권규;이승준
    • 한국강구조학회 논문집
    • /
    • 제21권5호
    • /
    • pp.471-481
    • /
    • 2009
  • 본 연구는 SSC(Stiffened Steel Plate-Concrete) 구조와 NSC(Non-Stiffened Steel Plate-Concrete) 구조의 압축거동 특성을 비교 분석하여 SSC 구조의 구조적 성능 향상 효과를 파악하는데 그 목적이 있다. 여기서, SSC 구조는 강판에 리브(H형강)을 사용하여 선지지하고 스터드로 점지지하여 콘크리트와 일체화 시킨 구조이다. 한편 NSC 구조는 강판에 스터드로 점지지하여 콘크리트와 일체화 시킨 구조이다. 실험을 통해 다음과 같은 결과를 얻었다. SSC 구조가 NSC 구조에 비해 시험체의 강판좌굴 억제 및 급격한 콘크리트의 취성파괴를 방지하는 것으로 나타났다. 또한 SSC 구조가 NSC 구조에 비해 약 5%~28%정도 최대압축강도가 증가한 것으로 나타났다.

Free Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method

  • Park, Myung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.805-815
    • /
    • 2003
  • In order to execute efficiently the free vibration analysis of 2-dimensional structures like plate structures, the author developed the finite element-transfer stiffness coefficient method. This method is based on the combination of the modeling techniques in the FEM and the transfer technique of the stiffness coefficient in the transfer stiffness coefficient method. Numerical results of the simply supported and the elastic supported rectangular plates showed that the present method can be successfully applied to the free vibration analysis of plate structures on a personal computer. We confirmed that, in the case of analyzing the free vibration of rectangular plate structures, the present method is superior to the FEM from the viewpoint of computation time and storage.