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1. Introduction

The demand for ecofriendly and lightweight systems has been 

gradually increasing in the transport machinery industries, e.g., 

shipbuilding, automobiles, aviation, and railroads, with the growing 

interest in environmental issues caused by global warming and the 

development of industrial technology. These industrial changes have 

increased the proportion of vibration noise in the high frequency range, 

exacerbating the vibration-noise issue of transportation machinery 

systems. Therefore, developing technology for predicting the vibration 

noise in the corresponding frequency range is becoming important for 

ensuring competitiveness in the transport machinery industries. 

Typically, deterministic approaches based on displacement methods, 

such as the conventional finite element method and boundary element 

method, have been utilized for vibration noise prediction method in the 

low frequency range. However, because these methods lack efficiency 

and reliability, statistical approaches such as statistical energy analysis 

(SEA) and energy flow analysis (EFA) are generally applied in the 

high frequency range. Numerical methods such as the finite element 

technique can be applied in EFA because it has an energy governing 

equation in the form of a differential equation, in contrast to SEA. 

Thus, EFA has recently emerged as a new alternative to high- 

frequency range vibration noise analysis, because the modeling 

efficiency is high and a detailed design review of the design 

parameters can be performed. In the early days after EFA was 

proposed by Belov et al. (1977), an energy flow model for out-of- 

plane motion was developed, which was mainly based on various 

simple structural element theories, e.g., those of the membrane, Euler 

beam, and Kirchhoff plate. Recently, however, Park and Hong 

(2006a), Park and Hong (2006b), and Park and Hong (2008) developed 

an energy flow model of the Timoshenko beam and Mindlin plate that 

reflects the shear-deformation effect and rotatory-inertia effect to 

increase the accuracy of the previously developed EFA model in the 

high frequency range, thereby expanding the analysis area. When 

beams or plates are coupled at arbitrary angles in actual structures, 

such as ships and offshore structures, the out-of-plane motion and 

in-plane motion are coupled, and the modal density of the in-plane 

motion increases with the frequency, increasing the importance of the 

model for in-plane motion in EFA. Therefore, Park et al. (2001) 

developed an energy flow model for in-plane motion for the EFA 
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analysis of a coupled plate structure in a high frequency range. 

However, a study on the effectiveness of the energy flow model 

according to the frequency is needed, because no systematic 

comparison with the exact solution for the in-plane motion of the plate 

was performed in the study. In the present study, an exact solution of 

the in-plane motion for the plate coupled at an arbitrary angle was 

newly derived, and the effectiveness of the energy flow model for the 

in-plane motion of the plate was examined through comparison with 

the analysis results of the energy flow model.

2. Energy Flow Model for In-plane Motion of Plate

The equation of motion for the in-plane wave of a damped plate 

without a load can be expressed as follows (Dym and Shames, 2013):




















(1)




















(2)

where  and  represent the in-plane displacements of the plate in the 

 and  directions, respectively,   represents the complex 

elastic modulus,  represents the structural damping loss factor,   

represents the Poisson’s ratio, and  represents the material density of 

the plate. The energy-flow model for the in-plane motion of the 

foregoing equation of motion can be derived by separating it into an 

in-plane longitudinal wave and an in-plane shear wave, as follows 

(Park et al., 2001): 









 〈〉〈〉 (3)









 〈〉〈〉 (4)

where  and   represent the group velocities of the in-plane 

longitudinal wave and in-plane shear wave of a thin plate, 

respectively; 〈〉 and 〈〉 represent the energy densities of the 

in-plane longitudinal wave and in-plane shear wave averaged in space 

and time respectively; and  and   represent the vibrational 

input power for the in-plane longitudinal wave and in-plane shear 

wave, respectively.

3. Energy Flow Model for 
Out-of-plane Motion of Plate

The equation of motion for the out-of-plane motion of a damped 

Kirchhoff plate without a load can be expressed as follows (Dym and 

Shames, 2013):







 


  (5)

where   represents the complex flexural rigidity. The 

energy flow model for the flexural wave of the Kirchhoff plate derived 

from the foregoing equation of motion can be expressed as follows 

(Bouthier and Bernhard, 1995):









 〈〉〈〉 (6)

where   represents the group velocity of the out-of-plane flexural 

wave of a thin plate, 〈〉 represents the energy density of the 

out-of-plane flexural wave averaged in space and time and   

represents the vibrational input power of the out-of-plane flexural 

wave.

4. Analysis of Vibration Energy of 
Plate Coupled at Arbitrary Angle

The plate model coupled at an arbitrary angle was considered for an 

analytical study of the energy flow model for the in-plane wave of the 

plate.

4.1 Exact Solution of Coupled Plate Structures
In the exact solution of a coupled plate for which all the outer 

boundaries are simply supported, the displacement can be calculated in 

the form of a Levy series that satisfies the -direction boundary 

condition equations, i.e., Eqs. (7)–(10). The displacement in the - and 

-directions in the th region can be expressed using Eqs. (11)–(13).

   (7)







  (8)

  (9)







  (10)






  

∞

sin
 (11)






  

∞

cos
 (12)






  

∞

sin
 (13)

Here,    and , , and  represent the 
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wave solutions in the   direction that satisfy the equation of motion. 

The following equation can be obtained by substituting the 

out-of-plane displacement expressed by Eq. (13) into Eq.(5), i.e., the 

equation of motion (Park et al., 2001).




 





 
 

 
 

(14)

Here,  


 ) represents the flexural wavenumber of 

the plate in the th plate section, and   and   represent the density and 

thickness of the plate, respectively. Because Eq. (14) is a fourth-order 

homogeneous ordinary differential equation, the wave solution of the 

displacement  in the   direction can be obtained as follows:

 
 exp exp


 exp exp ×

(15)

where 
  

 
  and 

  
 

 . Although such an exact 

solution of the flexural wave, which is an out-of-plane displacement, 

was used to validate the energy flow model for the flexural wave of a 

plate, the exact solution of the in-plane displacement and the energy 

flow solution were not directly compared in previous studies (Park et 

al., 2001). Park and Hong (2008) derived an exact out-of- plane motion 

solution from the equation of motion implemented as the simultaneous 

differential equations for the Mindlin plate. The matrix equation can 

be obtained as follows by substituting Eqs. (11)–(12) into the 

simultaneous differential Eqs. (1)–(2) to obtain the wave solution in 

the   direction of the in-plane motion of a plate in a similar manner 

(Park, 2018).




   (16)

Here, the matrices  and  are given by Eqs. (17) and (18), 

respectively.

 


 

 


(17)

  





   




 





   




   

 





  





 






(18)

The general solution of the above differential-equation system can 

be obtained as follows:

Fig. 1 Simply supported plates coupled at an arbitrary angle

 
  






 (19)

where  is the complex coefficient of the th-order mode, and 
  and   represent the th eigenvector and eigenvalue of 

matrices  , respectively. The number of unknowns for each 

plate boundary of the plate structure in Fig. 1 is 4 flexural waves and 4 

in-plane waves , requiring a total of 24 boundary conditions. The 

boundary conditions at    are expressed as follows.

 

  (20)




  (21)

  (22)





  (23)

The boundary conditions at the excitation-point locations of     

and     are expressed as follows.

   (24)

   (25)

  (26)






  (27)

  (28)

  (29)

  (30)
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  (31)

Here,

 


 



 , 
 




 , 

 
 



  이다.

The boundary conditions at     , where the two plates are 

coupled at an arbitrary angle, are expressed as follows.

sincos (32)

  (33)

cossin (34)

sincos (35)

 (36)

cossin (37)






 (38)

 (39)

Lastly, the four boundary conditions at    are expressed as 

follows (similar to the boundary conditions at   ).

  (40)




  (41)

  (42)





  (43)

If the displacement solution is obtained using the foregoing 

boundary conditions, the energy density and vibration intensity of the 

flexural wave and the in-plane wave of the plate can be obtained using 

the following equations:

〈〉  








 




 






 
 




 

 


  


(44)

〈〉    



 




 



 (45)

〈〉    



 




 



 (46)

Here, 

 





 ,  





 ,

  
 ,

 





 ,  





 

〈〉   








 






 
 







 
 




 




 



 (47)

〈〉   








 
 







 
 






(48)

〈〉   








 
 







 
 






(49)

where   and  
 

4.2 Energy Flow Solution of Coupled-plate Structures
The energy flow solution of the coupled plate can be obtained as in 

previous studies (Park et al., 2001). The Levy series solution that 

satisfies the -direction boundary condition of the energy governing 

equation in Eqs. (3), (4), and (6) was expressed, and the energy flow 

solution was calculated using the boundary condition of the wave 

solution in the   direction. 

〈〉 
  

∞

cos   (50)

Here, the wave solution of the energy density solution for each -type 

wave is given by Eq. (45).


 

  
 

  (51)

Here, 
±  represents the th-order mode coefficient of the wave 

solution traveling in the -type ± direction in the -plate region, and 


± .
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4.3 Energy Density Comparison of Coupled-plate Structures
It was assumed that the size of the plate structure in Fig. 1 was 

   1 m and that the coupled angle of the plate was 30°. 

The material of the plate was aluminum ( = 7.1 ×1010 N/m2 and  = 

2700 kg/m3), and the structural damping loss factor of the plate was set 

as  = 0.01 to express the spatial damping to a certain degree. All the 

plate thicknesses were  = 0.001 m. The vertical excitation force was 

applied to the center of the first plate position  = (0.5 m, 0.5 

m), and the size was 10 N. The number of modes for obtaining an 

approximate solution was set as 200 to improve the accuracy of the 

analysis. The analysis results for an exact solution at an excitation 

frequency of 10 kHz are shown in Figs. 2–5. The energy density of the 

flexural wave was the highest at the excitation point because the plate 

was excited with a vertical load, and it tended to decrease as the 

distance from the excitation point increased. Additionally, the plate 

had the highest energy density at the boundary where the plates were 

coupled at an arbitrary angle, because the in-plane wave was generated 

at the position where the two plates were coupled at an arbitrary angle 

(in contrast to the flexural wave), and the energy density decreased 

owing to the increased structural damping toward the inside of each 

plate. The propagation tendency of the vibration energy can be 

 

Fig. 2 Flexural energy density level (dB) distribution of exact 

solutions with  = 10 kHz and   = 0.01

Fig. 3 In-plane energy density level (dB) distribution of exact 

solutions with  = 10 kHz and   = 0.01

Fig. 4 Flexural intensity distribution of exact solutions with  = 

10 kHz and   = 0.01

Fig. 5 In-plane intensity distribution of exact solutions with  = 

10 kHz and   = 0.01

Table 1 Theoretical modal density of plate according to frequency 

change

Frequency (Hz)
Modal density (modes/Hz)

Flexural Longitudinal Shear

10,000 0.3188 0.0064 0.0021

30,000 0.3188 0.0192 0.0064

100,000 0.3188 0.0636 0.0213

observed in the excitation part of the vibrational intensity distribution, 

as shown in Figs. 4 and 5. The modal density of the plate vibration 

mode with respect to the frequency is presented in Table 1. Although 

the theoretical modal density of a flexural wave is constant with 

respect to the frequency, the in-plane wave tended to increase in 

proportion to the frequency.

The effectiveness of the EFA, which is a statistical approach, 

increased in the high frequency range with a high modal density. The 

energy density distributions of in-plane waves for exact solutions at 
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Fig. 6 In-plane energy density level (dB) distribution of exact solutions 

with  = 30 kHz and   = 0.01

Fig. 7 In-plane energy density level (dB) distribution of exact solutions 

with  = 100 kHz and   = 0.01

excitation frequencies of 30 and 100 kHz are shown in Figs. 6 and 7, 

respectively. The modal density increased with the frequency, 

increasing the mode superposition. 

The comparison results for the energy density of the exact solution 

and the energy flow solution at different frequencies, with   =  = 0.5 

m, are shown in Figs. 8–10.

Fig. 8 Comparison between the exact solution and the energy flow 

solution with  = 10 kHz and   = 0.01: , exact solution; 

☐, energy flow solution

Fig. 9 Comparison between the exact and energy flow solutions with 

 = 30 kHz and   = 0.01: , exact solution; ☐, energy flow 

solution

Fig. 10 Comparison between the exact and energy flow solutions 

with  = 100 kHz and   = 0.01: , exact solution; ☐, 

energy flow solution

Compared with the flexural wave, the modal density was relatively 

low for the in-plane wave at the same frequency, as indicated by the 

foregoing analysis results. Therefore, although the exact solution and 

energy flow solution for the flexural wave in the previous studies had 

similar energy density distributions owing to mode superposition even 

in a relatively low frequency range, the spatial distributions of the 

energy density of the exact solution and the energy flow solution 

became similar at a significantly high frequency. However, the 

in-plane energy flow solution successfully showed the average 

distribution of the exact solution even in a relatively low frequency 

range, indicating that the EFA is extremely effective for predicting the 

overall vibration energy level in the middle–high frequency 

broadband. The size of the plate was doubled (     = 2 m) to 

examine the effects on the plate size, plate coupled angle, and 

structural damping loss factor, as shown in Figs. 11–13, which present 

comparisons of the energy density between the exact solution and the 

EFA solution of the model with a plate coupled angle of 45° and a 

structural damping loss factor  = 0.001 for the plate material. Overall, 
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Fig. 11 Comparison between the exact and energy flow solutions 

with  = 10 kHz and   = 0.001: , exact solution; ☐, 

energy flow solution

Fig. 12 Comparison between the exact and energy flow solutions 

with  = 30 kHz and   = 0.001: , exact solution; ☐, 

energy flow solution

Fig. 13 Comparison between exact and energy flow solutions when 

 = 100 kHz,   = 0.001: : exact solution; ☐ : energy 

flow solution

the results were similar to those for the first example, even when the 

plate size, coupled angle, and structural damping loss factor were 

different.

5. Conclusion

In this study, the EFA, which is attracting attention as an effective 

vibration noise prediction method in the middle–high frequency 

ranges, was used to examine in-plane motions in coupled-plate 

structures. In previous studies, are view of the energetic characteristics 

depending on the frequency was performed by comparing the energy 

flow solution and the exact solution for the out-of-plane motion of the 

plate. However, a study on the reliability of the energy flow solution 

for in-plane motion was required, because no comparative review of 

in-plane motion had been conducted. In the present study, an EFA was 

performed to predict the average energy density level of the exact 

solution successfully for both out-of-plane and in-plane motions even 

in relatively low frequency ranges with a high out-of-plane modal 

density and low in-plane modal density. The EFA method is 

considered to be extremely effective for vibration analysis in the 

middle–high frequency ranges for engineers who are interested in the 

spatial distribution of the overall vibration energy level inside the 

structure rather than the spatial mode characteristics. In the future, the 

in-plane wave in the coupled model of the Mindlin plate, which has 

improved reliability in the high frequency range, must be verified.
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