• Title/Summary/Keyword: plate motion

Search Result 763, Processing Time 0.027 seconds

A New Washout Algorithm for Reappearance of Driving Perception of Simulator (운전 시뮬레이터의 주행감각 재현을 위한 새로운 가속도 모의 수법 알고리즘 개발)

  • 유기성;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.519-528
    • /
    • 2004
  • For reappearance of driving perception in a driving simulator, a washout algorithm is required. This algorithm can reappear the vehicle driving motions within workspace of the driving simulator. However classical washout algorithm contains several problems such as selection of order, cut-off frequency of filters, generation of wrong motion cues by characteristics of filters, etc. In order to overcome these problems, this paper proposes a new washout algorithm which gives more accurate sensations to drivers. The algorithm consists of an artificial inclination of the motion plate and human perception model with band pass filter and dead zone. As a result of this study, the motion of a real car could be reappeared satisfactorily in the driving simulator and the workspace of motion plate is restrained without scaling factor.

Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM (직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석)

  • Kim, Woo-Jin;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

Free In-plane Vibration of a Clamped Circular Plate (고정된 원형 플레이트의 평면내 자유진동)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF

PRELIMINARY STUDY ON THE PLATE MOTION IN KOREAN PENINSULA WITH NEW KOREAN VLBI ARRAY (우주측지 VLBI를 이용한 한반도 지각판 운동 예비 연구)

  • Kwak, Young-Hee;Sasao, Tetsuo;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.345-354
    • /
    • 2006
  • Korean Peninsula has been postulated to be on the Eurasian plate(EU). On the other hand, recent seismological works and GPS researches suggest that it is on a separate plate called the Amurian plate (AM). However, the GPS results we inconsistent with each other beyond the estimated statistical errors. Moreover, the estimated plate motion parameter, which we obtained from the velocity data of six Korean GPS stations, was not well agreeing with any existing results. Therefore, independent measurements are required to distinguish those results. In near future, we will have 4 VLBI stations in Korea. This compact Korean VLBI array is capable of achieving good determination of the plate motion parameters if it is located on stable sites. We estimated the precision of the AM motion parameters with the Korean VLBT array. The results showed that the Korean VLBI array would verify the existence of the AM, as far as the observation precision of 0.2-0.5mm/yr for station velocities is achieved. Therefore, new Korean geodetic VLBI array can contribute to crustal deformation studies in East Asia.

Characteristics of ROM and EMG to Balance Training in Unstable Plate System: Primary Study (균형 훈련 플레이트 시스템을 이용한 생체역학적 특성 연구)

  • Jun, SungChul;Lim, HeeChul;Lee, ChangHyung;Kim, TaeHo;Jung, DukYoung;Chun, KeyoungJin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.235-239
    • /
    • 2015
  • The purpose of this study was to investigate the unstable plate system for the advanced balance ability. 7 male volunteers (age $33.7{\pm}1.2$ years, height $174.7{\pm}3.8cm$, weight $86.0{\pm}3.6kg$, BMI $28.2{\pm}2.0kg/m^2$) performed the partial squat motion on the shape of CAP type(${\cap}$) and BOWL type(${\cup}$) plate system. The range of motion (ROM) and muscle activation were acquired by the motion analysis system and the EMG system. Results of ROMs of the CAP type plate system were shown the widely range of the deviation in the ankle joint on the sagittal plane (sagittal plane - hip joint $10.7^{\circ}$ > $5.4^{\circ}$, knee joint $16.3^{\circ}$ > $6.4^{\circ}$, ankle joint $18.8^{\circ}$ > $6.3^{\circ}$ ; transverse plane - hip joint $3.5^{\circ}$ > $1.8^{\circ}$, knee joint $5.3^{\circ}$ > $3.4^{\circ}$, ankle joint $11.3^{\circ}$ > $5.3^{\circ}$ ; frontal plane - hip joint $0.9^{\circ}$ > $0.5^{\circ}$, knee joint $0.8^{\circ}$ > $0.6^{\circ}$, ankle joint $4.8^{\circ}$ > $3.7^{\circ}$). Muscle activation results of the CAP type plate system were indicated higher in major muscles for balance performance than the BOWL type plate system (vastus lateralis 0.90 > 0.62, peroneus longus 0.49 > 0.21, biceps femoris 0.38 > 0.14, gastrocnemius 0.11 > 0.05). These findings may indicate that the CAP type plate system would expect better effectiveness in perform the balance training. This paper is primary study for developing balance skills enhancement training device.

Making for Circular Motion Table for Controller Design of Movement of Object (운동 물체의 제어기 설계를 위한 3축 가변 원판형 모션테이블 제작)

  • You, Jeong-Bong;Wang, Hyun-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.905-910
    • /
    • 2008
  • In this paper, a circular motion table which is able to simulate movement of object is designed and the experiment of control system using circular motion table is presented. Circular motion table is consisted of three axes changed on length and of ball splines which keep vertical centre axis of circular plate. Variable length of three axes make circular plate incline as vertical centre axis is kept on vertical center axis of circular motion table. It is designed that control system drives three servo motor, that is, make change length of axis simultaneously or independently. And this paper presents example of flight simulation using circular motion table. it will contribute toward nurture expert manpower of aerospace/robotics to popularize circular motion table and make an experiment using it.

Wave Energy Extraction using Partially Submerged Pendulum Plate with Quay Wall (안벽 앞에 부분 잠긴 진자판에 의한 파랑에너지 추출)

  • Cho, Il-Hyoung;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.208-218
    • /
    • 2017
  • The performance of a wave energy converter (WEC) that uses the rolling motion of a partially submerged pendulum plate in front of a quay wall was analyzed. The wave exciting moment and hydrodynamic moment were obtained using a matched eigenfunction expansion method (MEEM) based on the linear potential theory, and then the roll motion response of a pendulum plate, time averaged extracted power, and efficiency were investigated. The optimal PTO damping coefficient was suggested to give the optimal extracted power. The peak value of the optimal extracted power occurs at the resonant frequency. The resonant peak and its width increase as the submergence depth of the pendulum plate decreases and thickness of the pendulum plate increases. An increase in the wave incidence angle reduces the efficiency of the wave energy converter. In addition, the WEC using a rolling pendulum plate contributes not only to the extraction of the wave energy, but also to a reduction in the waves reflected from the quay wall, which helps to stabilize ships going near the quay wall.

Novel Methods for Spatial Position Control of a Plate In the Conductive Plate Conveyance System Using Magnet Wheels (자기차륜을 이용한 전도성 평판 이송 시스템에서 평판 위치 제어를 위한 새로운 방법)

  • Jung, Kwang Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1010-1017
    • /
    • 2013
  • Two-axial electrodynamic forces generated on a conductive plate by a partially shielded magnet wheel are strongly coupled through the rotational speed of the wheel. To control the spatial position of the plate using magnet wheels, the forces should be handled independently. Thus, three methods are proposed in this paper. First, considering that a relative ratio between two forces is independent of the length of the air-gap from the top of the wheel, it is possible to indirectly control the in-plane position of the plate using only the normal forces. In doing so, the control inputs for in-plane motion are converted into the target positions for out-of-plane motion. Second, the tangential direction of the open area of the shield plate and the rotational speed of the wheel become the new control variables. Third, the absolute magnitude of the open area is varied, instead of rotating the open area. The forces are determined simply by using a linear controller, and the relative ratio between the forces creates a unique wheel speed. The above methods were verified experimentally.

Conceptual Design of Motion Reduction Device for Floating Wave-Offshore Wind Hybrid Power Generation Platform (부유식 파력-해상풍력 복합발전 플랫폼의 운동저감장치 개념설계)

  • Park, Sewan;Kim, Kyong-Hwan;Hong, Keyyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • The present study deals with the conceptual design of a motion reduction device for a floating wave-offshore wind hybrid power generation platform. A damping plate attached to the bottom of a column of a large semi-submersible is introduced to reduce the motion of the platform. Performance analyses on various shapes and configurations of damping plates were performed using the potential flow solver, and the appropriate configuration and size of the damping plate were selected based on the numerical results. In order to see the effect of viscous damping, a small scale model test was performed in a 2D wave flume. The performances of five different damping plates were measured and discussed based on the results of free decay tests and regular wave tests.

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren;Chen, Chun-Sheng;Yu, Szu-Ying
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.367-383
    • /
    • 2011
  • In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.