• Title/Summary/Keyword: plate equations

Search Result 1,089, Processing Time 0.02 seconds

Torsional and Warping Constants of I-shaped Plate Girders with a Sine Corrugated Web (Sine 파형 복부판을 갖는 I형 플레이트 거더의 비틂 및 뒴 상수)

  • Kim, Seungjun;Jeon, Jin Su;Won, Deok Hee;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.347-354
    • /
    • 2012
  • In this study, the equations of torsional and warping constants of a I-shaped plate girder with sine corrugated web are suggested. Because of geometric characteristics of the section, a I-shaped plate girder with corrugated web shows high out-of-plane stiffness, shear strength, and torsional stiffness. Torsional constant and warping constant definitely affect lateral-torsional buckling loads. Therefore, exact estimation of the sectional properties is quite important. But, it is difficult to estimate these properties by former methods. So, this study was focused on suggestion of the rational equations to calculate torsional and warping constants. In order to investigate the effects of geometric characteristics of sine-corrugated webs on torsional stiffness and warping torsional constant, finite element analyses for pure torsional behavior and warping torsional behavior of I-shaped plate girders were performed. By regression analyses of the analytical results, rational equations of the torsional constant and warping constant were suggested. Suggested equations for the properties were validated based on the analytical results of lateral-torsional buckling of simply supported I-shaped plate girder. By suggested equations, torsional and warping constants of I-shaped plate girders with a sine-corrugated web can be rationally estimated and more exact lateral-torsional buckling load can be simply calculated.

A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.693-701
    • /
    • 2018
  • This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under thermal environments. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton's principle. Differential quadrature method (DQM) is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as temperature rise, nonlocal parameter, length scale parameter, elastic foundation and aspect ratio on vibration characteristics a graphene sheets are studied. It is seen that vibration frequencies and critical buckling temperatures become larger and smaller with increase of strain gradient and nonlocal parameter, respectively.

Three-dimensional and free-edge hygrothermal stresses in general long sandwich plates

  • Ahmadi, Isa
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.275-290
    • /
    • 2018
  • The hygrothermal stresses in sandwich plate with composite faces due to through the thickness gradient temperature and (or) moisture content are investigated. The layer-wise theory is employed for formulation of the problem. The formulation is derived for sandwich plate with general layer stacking, subjected to uniform and non-uniform temperature and moisture content through the thickness of the plate. The governing equations are solved for free edge conditions and 3D stresses are investigated. The out of plane stresses are obtained by equilibrium equations of elasticity and by the constitutive law and the results for especial case are compared with the predictions of a 3D finite element solution in order to study the accuracy of results. The three-dimensional stresses especially the free edge effect on the distribution of the stresses is studied in various sandwich plates and the effect of uniform and non-uniform thermal and hygroscopic loading is investigated.

Eddy Current Analysis In Cover Plate of Power Transformers using Indirect Boundary Integral Equation Method (간접경계적분법을 이용한 변압기 cover plate에서의 와전류 해석)

  • Kim, Sang-Young;Kim, Dong-Hun;Han, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.88-90
    • /
    • 1998
  • In this paper, the indirect BIEM(boundary integral equation method) is adopted to analyze 3-D eddy currents in cover plate of power transformer. In indirect BIEM, the equivalent magnetic surface charge density and the eqivalent magnanetic surface current density are the unknowns. Using triangular constant elements, the integral equations are discretized into boundary element equations of minimum order. Eddy currents are obtained in terms of euqivalent magnetic surface sources. And the locad overheating can be predicted using the eddy currents distribution in cover plate of power transformer.

  • PDF

Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs

  • Motezaker, Mohsen;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.289-297
    • /
    • 2020
  • In the present research post-buckling of a cut out plate reinforced through carbon nanotubes (CNTs) resting on an elastic foundation is studied. Material characteristics of CNTs are hypothesized to be altered within thickness orientation which are calculated according to Mori-Tanaka model. For modeling the system mathematically, first order shear deformation theory (FSDT) is applied and using energy procedure, the governing equations can be derived. With respect to Rayleigh-Ritz procedure as well as Newton-Raphson iterative scheme, the motion equations are solved and therefore, post-buckling behavior of structure will be tracked. Diverse parameters as well as their reactions on post-buckling paths focusing cut out measurement, CNT's volume fraction and agglomeration, dimension of plate and an elastic foundation are investigated. It is revealed that presence of a square cut out can affect negatively post-buckling behavior of structure. Moreover, adding nanocompsits in the matrix leads to enhancement of post-buckling response of system.

The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT

  • Arshid, Ehsan;Khorshidvand, Ahmad Reza;Khorsandijou, S. Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.97-112
    • /
    • 2019
  • Using the classical, first order and third order shear deformation plates theories the motion equations of an undrained porous FG circular plate which is located on visco-Pasternak elastic foundation have been derived and used for free vibration analysis thereof. Strains are related to displacements by Sanders relationship. Fluid has saturated the pores whose distribution varies through the thickness according to three physically probable given functions. The equations are discretized and numerically solved by the generalized differential quadrature method. The effect of porosity, pores distribution, fluid compressibility, viscoelastic foundation and aspect ratio of the plate on its vibration has been considered.

Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory

  • Yahea, Hussein T.;Majeed, Widad I.
    • Composite Materials and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-199
    • /
    • 2021
  • A simple solution for free vibration of cross-ply and angle-ply laminated composite plates in a thermal environment is investigated using a basic trigonometric shear deformation theory. By application of trigonometric four variable plate theory, the transverse displacement is subdivided into bending and shear components, the present theory's number of unknowns and governing equations is reduced, making it easier to use. Hamilton's Principle is extended to derive the equations of motion of the plates using Navier's double trigonometric series, a closed-form solution is obtained; the primary conclusion is that simple solution is obtained with good results accuracy when compared with previously published results, and the natural frequency will differ depending on, environment temperature, thickness ratio, and lamination angle, as well as the aspect ratio of the plate.

Thermal buckling and stability of laminated plates under non uniform temperature distribution

  • Widad Ibraheem Majeed;Ibtehal Abbas Sadiq
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.503-511
    • /
    • 2023
  • Stability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter "m", whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of temperature reduces plate frequency.

GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF A PLATE EQUATION WITH A CONSTANT DELAY TERM AND LOGARITHMIC NONLINEARITIES

  • Remil, Melouka
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.321-338
    • /
    • 2020
  • In this paper, we investigate the viscoelastic plate equation with a constant delay term and logarithmic nonlinearities. Under some conditions, we will prove the global existence. Furthermore, we use weighted spaces to establish a general decay rate of solution.

Theoretical investigation on vibration frequency of sandwich plate with PFRC core and piezomagnetic face sheets under variable in-plane load

  • Arani, Ali Ghorbanpour;Maraghi, Zahra Khoddami;Ferasatmanesh, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • This research investigated the vibration frequency of sandwich plate made of piezoelectric fiber reinforced composite core (PFRC) and face sheets of piezomagnetic materials. The effective electroelastic constants for PFRC materials are obtained by the micromechanical approach. The resting medium of sandwich plate is modeled by Pasternak foundation including normal and shear modulus. Besides, sandwich plate is subjected to linearly varying normal stresses that change by load factor. The coupled equations of motion are derived using first order shear deformation theory (FSDT) and energy method. These equations are solved by differential quadrature method (DQM) for simply supported boundary condition. A detailed numerical study is carried out based on piezoelectricity theory to indicate the significant effect of load factor, volume fraction of fibers, modulus of elastic foundation, core-to-face sheet thickness ratio and composite materials on dimensionless frequency of sandwich plate. These findings can be used to aerospace, building and automotive industries.