• 제목/요약/키워드: plate equation

검색결과 811건 처리시간 0.031초

보이론을 적용한 선형적 두께변화를 갖는 원형평판의 처짐에 관한 연구 (A Study on the Deflection of the Circular Plate with a Linear Change of Thickness using the Elastic Beam Theory)

  • 한동섭;한근조;김태형;심재준;이성욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1695-1698
    • /
    • 2005
  • In this paper we investigate characteristics of deflection for circular plate with the non-symmetric boundary condition that is the boundary condition partly supported along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supported and completely clamped boundary conditions, this study derives the maximum deflection formula of the circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with the change of width and thickness along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.

  • PDF

Bending of an isotropic non-classical thin rectangular plate

  • Fadodun, Odunayo O.;Akinola, Adegbola P.
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.437-440
    • /
    • 2017
  • This study investigates the bending of an isotropic thin rectangular plate in finite deformation. Employing hyperelastic material of John's type, a non-classical model which generalizes the famous Kirchhoff's plate equation is obtained. Exact solution for deflection of the plate under sinusoidal loads is obtained. Finally, it is shown that the non-classical plate under consideration can be used as a replacement for Kirchhoff's plate on an elastic foundation.

유동장 수치해석이 포함된 퍼프모델을 이용한 오염물질의 확산 해석 (Pollutant Dispersion Analysis Using the Gaussian Puff Model with the Numerical Flowfield Information)

  • 정영래;박원규;박옥현
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.12-20
    • /
    • 1999
  • The computations of the flowfield and pollutant dispersion over a flat plate and the Russian hills of various slopes are described. The Gaussian plume and the puff model have been used to calculate concentration of pollutant. The Reynolds-averaged unsteady incompressible Navier-Stokes equation with low Reynolds κ-ε model has been used to calculate the flowfield. The flow data of a flat plate and the Russian hills from Navier-Stokes equation solutions has been used as the input data for the puff model. The computational results of flowfield agree well with experimental results of both a flat plate and Russian hills. The concentration prediction by the Gaussian plume model and the Gaussian puff model also agrees flirty well with experiments.

  • PDF

곡률 원판이 결합된 외팔 원통 쉘의 고유진동 해석 (Free Vibration Analysis of a Curvatured Plate Welded to a Clamped-Free Circular Cylindrical Shell)

  • 임정식;손동성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.529-534
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a curvaturated plate attached at the top of the shell. The boundary conditions of the shell considered here were clamped at the bottom and free at the top of the shell. Before the analysis of the shell/plate combined structure, the natural frequencies of the plate and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. The frequency equation of the combined structure was derived from the continuity condition at the junction of the shell and the plate. The frequencies for various curvature factors of the plate were presented and compared with those from ANSYS to show its validity of the present method.

  • PDF

철근 콘크리트 보의 보강을 위한 하이브리드 조립형 보강기법에 관한 해석적 연구 (Analytical Study on Hybrid Prefabricated Retrofit Method for Reinforced Concrete Beams)

  • 문상필;이성호;이영학;김민숙
    • 한국공간구조학회논문집
    • /
    • 제20권3호
    • /
    • pp.71-79
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method that improve structural performance and reduce construction period was developed by using a finite element analysis. The hybrid prefabricated retrofit method consist of a Z-shaped side plate, a L-shaped lower plate, and a bottom plate containing an steel plate with openings. This shape has advantage that a retrofit method is possible regardless of the size of the beams and a follow-up process such as reinforcement bars placing are not required. The finite element analysis of hybrid Prefabricated retrofit method showed the most ideal stress distribution when the thickness of bottom plate was 10mm, the thickness of the L-shaped lower plate was 5mm, the thickness of the Z-shaped side plate was 2.5mm, and the bolt spacing was 200mm. The bending strength equation of Hybrid prefabricated retrofit method was proposed through the plastic stress distribution method in KDS 41 31 00. The result of Comparison the proposed equation with the finite element analysis, it is determined that the design of hybrid prefabricated retrofit method is possible through the KDS 41 31 00.

고속 경구조선 알루미늄 판부재의 구조강도 고찰 (Consideration of the Structural Strength of High Speed Aluminum Planning Boat Plate Member)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.91-98
    • /
    • 2008
  • In order to establish a design guide for the bottom plate structure of a 4.3 ton aluminum planning boat, the feasibilities of bottom plate scantling of the ship are investigated based on the results of structural strength analysis and a simple equation and evaluation system are developed for initial structural design purposes. This study consists of 5 steps: First, the background, necessity, and purpose of this study are explained briefly, Second, the principal dimensions of this ship, the position of the considered bottom plate members and material characteristics are introduced. Third, the equivalent design pressure concept is introduced and evaluated based on experience and experimental data. Fourth, the strength of bottom plate members are examined using elasto-plastic nonlinear structural analysis, and response levels and several boundary conditions are reviewed based on the analysis results. Finally, in order to suggest design guides in respect to the ship's structural design, a simple design equation and evaluation system for bottom plate members are suggested for boats in the 4.3 ton aluminumboat range through the introduction of safety factorsbased on the ultimate design pressure concept.

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

Contact problem for a stringer plate weakened by a periodic system of variable width slots

  • Mir-Salim-zada, Minavar V.
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.719-724
    • /
    • 2017
  • We consider an elastic isotropic plate reinforced by stringers and weakened by a periodic system of rectilinear slots of variable width. The variable width of the slots is comparable with elastic deformations. We study the case when the slots faces get in contact at some area. Determination of parameters characterizing the partial closure of variable width slots is reduced to the solution of a singular integral equation. The action of the stringers is replaced with unknown equivalent concentrated forces at the points of their connection with the plate. The contact stresses and contact zone sizes are found from the solution of the singular integral equation.

환원판 덮개를 갖는 원통형 연료탱크의 진동해석 (Vibration of Liquid-filled Cylindrical Storage Tank with an Annular Plate Cover)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.751-759
    • /
    • 2003
  • The theoretical method is developed to investigate the vibration characteristics of the sloshing and bulging mode for the circular cylindrical storage tank with an annular plate on free surface. The cylindrical tank is filled with an inviscid and incompressible liquid. The liquid domain is limited by a rigid cylindrical surface and a rigid flat bottom. As the effect of free surface waves Is taken into account in the analysis, the bulging and sloshing modes are studied. The solution for the velocity potential of liquid movement is assumed as a suitable harmonic function that satisfies Laplace equation and the relevant boundary conditions. The Rayleigh-Ritz method is used to derive the frequency equation of the cylindrical tank. The effect of Inner-to-outer radius ratio and thickness of annular plate and liquid volume on vibration characteristics of storage tank is studied. The finite element analysis is performed to demonstrate the validity of present theoretical method.

용착 금속을 고려한 필릿 용접에서 온도 분포 예측을 위한 해석적 모델 (An Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding Including the Effect of Molten Metal)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.116-124
    • /
    • 1995
  • This paper presents an analytical solution to predict the transient temperature distribution in fillet arc welding including the effect of molten metal. The solution is obtained by solving a transient three-dimensional heat conduction equation with convection boundary conditions on the surfaces of a plate, and mapping the infinite plate onto the fillet weld geometry with energy equation. The electric heat input on the fillet weld and on the infinite plate is assumed to have a combination of two bivariate Gaussian distribution. To check the validity of the solution. FCA welding experiments were performed under various welding conditions. The actual isotherms of the weldment cross-sections at various distances from the arc start point are compared with those of simulation result.

  • PDF