• Title/Summary/Keyword: plastic work

Search Result 730, Processing Time 0.033 seconds

Observation of the Deformation-Induced Anisotropy in the Square-Die Extrusion Process (평금형 압출공정에 대한 변형이방성 예측 알고리즘의 적용)

  • 이창희;양동열;이용신
    • Transactions of Materials Processing
    • /
    • v.11 no.8
    • /
    • pp.724-730
    • /
    • 2002
  • Due to extremely large reduction of area or extrusion ratio in ordinary production of extruded profiles, anisotropy is naturally induced by large severe deformation during the extrusion process. Therefore, the anisotropic properties play a great role in the post processing of extruded profiles, such as in bending. Moreover, undesirable deformation will be involved when the deformation-induced anisotropy is ignored. In order to observe the deformation-induced anisotropy of the thin-walled product, the proposed algorithm is applied to some chosen industrial extrusion processes. In the present work, the method for prediction of deformation-induced anisotropy employing the Barlats six-component yield potential to the rigid-plastic finite element method is proposed. The proposed algorithm is verified with the comparison to the crystallographic texture analysis, and then applied to the C-section extrusion process using a square die. The predicted anisotropy is then compared with the experimental and computational observations for validating the proposed algorithm.

Formulation of Special Constitutive Equations for Inelastic Responses of Porous Metals(II) - Elastic, Plastic Strain Hardening Material - (다공질 금속의 비탄성거동을 위한 특수 구성방정식의 형성 II)

  • Kim, K.T.;Suh, J.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 1988
  • A special set of constitutive equations is formulated to predict elastic-plastic strain hardening responses of porous metals. Including the effect of the material's strain hardening in the yield function, the constitutive equations are capable of showing no dip phenomena in uniaxial strain compression and prediction work-hardening response for plastically precyled porous metal. The proposed constitutive equations are compared with experimental data for porous tungsten.

The Study on Pullout Resistance Characteristics of the Compression Anchor by Pullout Tests on the Field (현장실험에 의한 압축형 앵커의 인발거동특성 연구)

  • 홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.44-52
    • /
    • 2002
  • The mechanism of pullout resistance of compression anchor is analysed. This anchor is developed through the field pullout tests and the laboratory element test. The compression anchor is characterized by decrease of progressive failure, simple site work, economy and durability compared with tension anchor. The characteristics of compression anchor, compared with tension anchor. mainly are summarized as follows ; (1) The plastic displacement of anchor body is very small during pullout of anchor. (2) Total anchor length decreases by the shortening of free length; (3) The progressive failure is decreased.; (4) The safety factor for pullout resistance increases with time after construction of anchor.

The Effects of Orthogonal Ribs on Structural Warpage During Plastic Injection Process (사출성형과정에서 직교리브가 구조물의 휨에 미치는 영향)

  • Lee, Sung-Hee;Hwang, Chul-Jin;Kang, Jung-Jin;Heo, Young-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.983-988
    • /
    • 2004
  • In the present study, the effects of orthogonal ribs on structural warpage during injection molding process were investigated. Basic ribbed models for the evaluation of degree of warpage were introduced and designed. Injection molds for these models are manufactured based on the full 3D CAD/CAM technology and specimens are prepared for experiment. Numerical analysis using commercial plastic injection molding analysis software was also performed to compare the results with experimental ones. The variations of materials and parameters such as injection time, mold temperature, melt temperature, holding time were considered in the present work. It was shown that orthogonal ribs have significant effect on the reduction of warpage during the injection molding process.

  • PDF

Rigid-Plastic Finite Element Analysis for the Lamination Process of a Precision Motor Core using Progressive Dies (순차이송 금형을 사용한 정밀 모터코어 적층공정의 강소성 유한요소해석)

  • Park, Keun;Choi, Sang-Ryun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.45-52
    • /
    • 2001
  • In order to increase the productivity of electrical parts, manufacturing processes using progressive dies have been widely used in the industry. Motor cores have been fabricated using progressive stacking die with the lamination procedure for better electro-magnetic property. For the proper design off process, a prediction of the process is required to obtain many design parameters. In this work, rigid-plastic finite element analysis is carried out in order to simulate the lamination process of the motor core. The effects of the embossing depth, the amount of deviation, and the number of stacked sheets are investigated and compared with experiments. The forming process can then be predicted successfully from the results of analyses, which enables an appropriate design to be made for the die and the process.

  • PDF

Nanostructural Formation in Steel Material by ECAP

  • Kvackaj, Tibor;Zemko, Michal;Kuskulic, Tomas;Kocisko, Robert;Besterci, Michal;Dobatkin, Sergej V.;Molnarova, Maria
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.130-131
    • /
    • 2006
  • In the present research work was searched the influence of severe plastic deformation (SPD) realized by ECAP (equalchannel angular pressing) on structural, mechanical and plastic properties of IF (interstitial free) steel. For physical simulation ECAP process with right angle channels $(90^{\circ})$ was used. The ECAP process was numerical simulated (namely its course of temperature, strain and stress fields and deformation forces) by FormFEM software, too.

  • PDF

A study on the nonlinear analysis of spatial frame structures with nonlinear rotational spring elements (비선형 회전 스프링 요소를 갖는 공간 프레임의 구조의 비선형 해석에 관한 연구)

  • 이병채;박문식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.29-42
    • /
    • 1990
  • Three dimensional frame structures with such nonlinearities as large displacements, medium rotations, plastic hinges and local defects are efficiently analyzed by introducing the nonlinear rotational spring. Formulations are based on the incremental updated Lagrangian descriptions and the virtual work principle, Axial displacement and twisted angle in beam elements are interpolated linearly, while bending displacements are approximated by the Hermite polynomials. The modified are length method is used as a solution method. The moment-angle of rotation relationship obtained analytically or experimentally can be easily incorporated into the solution procedure. Several examples tested show that the present method can be used efficiently in analyzing nonlinear frame structures with plastic hinges or local defect.

  • PDF

Plastic Deformation Characteristic of AZ31 Magnesium alloy Sheet (AZ31 마그네슘 합금판재의 소성변형특성)

  • Park J. G.;Kim Y. S.;Kuwabara Toshihiko;You B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.64-68
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile test of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile test were performed until $7\%$ of engineering strain. R-values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci are made by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5\%$ of equivalent strain at biaxial tensile test.

  • PDF

Correlation Between Tensile-compressive Behavior and Formability of Al7050 Alloy (Al7050 합금의 인장-압축거동과 성형성 간 상관관계)

  • Bae, D.H.;Oh, J.H.;Jeong, C.;Kim, J.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.64-72
    • /
    • 2022
  • Since aluminum alloys experience both tensile and compression deformation modes during forming process, it is important to understand the role of deformation mode on the hot formability of metallic alloys. In the present work, the hot formability of Al7050 alloy was investigated by conducting both tensile and Gleeble tests at various temperatures and strain rates. Processing maps representing low efficiency regions were observed at low temperature and high strain rate in both tensile and compressive deformation modes while the maximum efficiency regions depended on different deformation modes. Moreover, samples tested at stable processing conditions presented a smaller pore fraction than those at instable conditions that resulted in crack initiation during plastic deformation. This result shows that different deformation modes during plastic forming can affect formability changes of metallic alloys. Understanding of tension-compression behaviors will help us solve this problem.

Derivation of work-hardening exponent using continuous indentation technique (연속압입시험법을 이용한 가공경화지수의 유도)

  • Jeon, Eun-Chae;Ahn, Jeong-Hoon;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.256-261
    • /
    • 2000
  • In this study, we derived work-hardening exponent using continuous indentation test technique. Continuous indentation test technique is a powerful method to evaluate mechanical properties, such as hardness, modulus, ${\sigma}-{\varepsilon}$ curves and etc. It has many merits conventional indentation test has. The relationship between true stress and mean contact pressure and between strain and indentation depth were derived. While the indenter pushes the materials, the region around the indenter is deflected elastically. It is called elastic deflection. And pile-up phenomenon related to plastic deformation around the indenter increased the contact depth, and sink-in phenomenon decreases. So we calibrated contact depth change by considering elastic deflection and pile-up/sink-in. Using calibrated contact depth we redefined the relationship between true stress and mean contact pressure and between strain and contact depth. Through these relationship we could derive work-hardening exponent by analyzing load-depth curves. And it showed good agreement with tensile test results.

  • PDF