• 제목/요약/키워드: plastic substrates

검색결과 248건 처리시간 0.031초

Silicon Thin-Film Transistors on Flexible Polymer Foil Substrates

  • Cheng, I-Chun;Chen, Jian Z.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1455-1458
    • /
    • 2008
  • Amorphous silicon (a-Si:H) thin-film transistors (TFTs) are fabricated on flexible organic polymer foil substrates. As-fabricated performance, electrical bias-stability at elevated temperatures, electrical response under mechanical flexing, and prolonged mechanical stability of the TFTs are studied. TFTs made on plastic at ultra low process temperatures of $150^{\circ}C$ show initial electrical performance like TFTs made on glass but large gate-bias stress instability. An abnormal saturation of the instability against operation temperature is observed.

  • PDF

Tight adhesion of plastic substrates for cell gap stability in flexible LCDs

  • Jin, Min-Young;Kim, Sang-Il;Souk, Jun-Hyung;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.78-81
    • /
    • 2008
  • We developed tight adhesion techniques of two plastic substrates to maintain cell gap stability for rugged flexible LCDs. By combining rigid spacers and several adhesion materials, we demonstrated mechanically very stable flexible LCDs against pressure and bending.

  • PDF

Development of a Low Temperature Doping Technique for Application in Poly-Si TFT on Plastic Substrates

  • Hong, Wan-Shick;Kim, Jong-Man
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1131-1134
    • /
    • 2003
  • A low temperature doping technique has been studied for application in poly-Si TFT's on plastic substrates. Heavily-doped amorphous silicon layers were deposited on poly-Si and the dopant atoms were driven in by subsequent excimer laser annealing. The entire process was carried out under a substrate temperature of $120^{\circ}C$, and a sheet resistance as low as $300 {\Omega}/sq$. was obtained.

  • PDF

Development of a Low Temperature Doping Technique for Applications in Poly-Si TFT on Plastic Substrates

  • Hong, Wan-Shick;Kim, Jong-Man
    • Journal of Information Display
    • /
    • 제4권3호
    • /
    • pp.17-21
    • /
    • 2003
  • A low temperature doping technique to be applied in poly-Si TFTs on plastic substrates was investigated. Heavily-doped amorphous silicon layers were deposited on poly-Si and the dopant atoms were driven in by subsequent excimer laser annealing. The entire process was carried out under a substrate temperature of 120 $^{\circ}C$, and a sheet resistance of as low as 300 ${\Omega}$/sq. was obtained.

Excimer laser crystallization of sputtered a-Si films on plastic substrates

  • Cho, Hans-S;Jung, Ji-Sim;Kim, Do-Young;Park, Young-Soo;Park, Kyung-Bae;Kwon, Jang-Yeon;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.962-965
    • /
    • 2004
  • In this work, thin films of amorphous silicon (a-Si) were formed on plastic substrates by sputtering deposition and crystallized using excimer laser irradiation. As the entire process is conducted at room temperature, and the laser irradiation-induced heating is confined to the thin film, the plastic substrate is not subjected to thermal stresses. The microstructure resulting from the laser irradiation was dependent on the laser irradiation energy density and the composition of the underlying buffer layers. It was found that a layer of AlN deposited as a buffer between the plastic and the a-Si film increased the endurance of the a-Si film under laser irradiation, and resulted in polycrystalline Si grains up to 100nm in diameter.

  • PDF

계면균열을 가진 연성접합재의 소성영역 크기 - 이종 모재의 경우 - (Plastic Zone Size in a Ductile Layer with an Interface Crack - Case Study for Dissimilar Substrates -)

  • 김동학;강기주
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.898-904
    • /
    • 2003
  • Using the modified Irwin model and the modified Dugdale model, the plastic zone size near the interface crack tip in a ductile layer bonding two dissimilar elastic substrates is predicted. Validity of the models is examined by finite element method. The effects of several factors such as the mode mixity, T-stress and material properties are explored. The plastic zone size significantly decreases with the Poisson's ratio of the ductile layer.

Near $100^{\circ}C$ low temperature a-Si TFT array fabrication on 7 inch flexible PES substrates

  • Nikulin, Ivan V.;Hwang, Tae-Hyung;Jeon, Hyung-Il;Kim, Sang-Il;Roh, Nam-Seok;Shin, Seong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.434-438
    • /
    • 2006
  • High-quality a-Si TFTs were fabricated on 7 inch plastic PES substrates at $130^{\circ}C$ and $100^{\circ}C$. It had been shown that the key factor for successful TFT fabrication on the relatively large plastic substrates is thorough control of total active layer's stress by means of deposition temperature reduction and single layer's intrinsic stress optimization.

  • PDF

Stretchable and Foldable Electronics by Use of Printable Single-Crystal Silicon

  • 안종현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.29-29
    • /
    • 2008
  • Realization of electronics with performance equal to established technologies that use rigid semiconductor wafers, but in lightweight, foldable and stretchable formats would enable many new application possibilities. Examples include wearable systems for personal health monitoring, 'smart' surgical gloves with integrated electronics and electronic eye type imagers that incorporate focal plane arrays on hemispherical substrates. Circuits that use organic or certain classes of inorganic electronic materials on plastic or steel foil substrates can provide some degree of mechanical flexibility, but they cannot be folded or stretched. Also, with few exceptions such systems offer only modest electrical performance. In this talk, I will present a new approach to high performance, flexible and stretchable integrated circuits. These systems combine single-crystal silicon nanoribbons with thin plastic or elastomeric substrates using both "top-down" and "transfer-printing" technologies. The strategies represent promising routes to high performance, flexible and stretchable optoelectronic devices that can incorporate established, high performance inorganic electronic materials.

  • PDF

전사기법을 이용한 실리콘 나노선 트랜지스터의 제작 (Fabrication of Silicon Nanowire Field-effect Transistors on Flexible Substrates using Direct Transfer Method)

  • 구자민;정은애;이명원;강정민;정동영;김상식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.413-413
    • /
    • 2009
  • Silicon nanowires (Si NWs)-based top-gate field-effect transistors (FETs) are constructed by using Si NWs transferred onto flexible plastic substrates. Si NWs are obtained from the silicon wafers using photolithography and anisotropic etching process, and transferred onto flexible plastic substrates. To evaluate the electrical performance of the silicon nanowires, we examined the output and transfer characteristics of a top-gate field-effect transistor with a channel composed of a silicon nanowire selected from the nanowires on the plastic substrate. From these FETs, a field-effect mobility and transconductance are evaluated to be $47\;cm^2/Vs$ and 272 nS, respectively.

  • PDF

포트 충전용 상토의 물리·화학성이 플라스틱백 재배를 통해 발생한 '설향' 딸기의 자묘 생육에 미치는 영향 (Impact of Physico·chemical Properties of Root Substrates on Growth of 'Seolhyang' Strawberry Daughter Plants Occurred through Bag Culture of Mother Plants)

  • 최종명;박지영;윤무경
    • 원예과학기술지
    • /
    • 제28권6호
    • /
    • pp.964-972
    • /
    • 2010
  • 피트모스+버미큘라이트(5:5, A), 피트모스+펄라이트(7:3, B), 코코피트+펄라이트(7:3, C), 코코피트+피트모스+펄라이트(3.5:3.5:3.0, D), 왕겨+코코피트+펄라이트(2:7:1, E), 그리고 왕겨+코코피트(3:7, F)의 6종류 상토를 혼합하여 상부 직경 10cm의 플라스틱 포트에 충전한 후 '설향' 딸기의 모주에서 발생한 런너를 고정시켜 번식시키면서 상토 물리 화학성이 자묘 생육에 미치는 영향을 구명하기 위하여 본 연구를 수행하였다. 자묘 육묘용 상토의 용기용수량과 기상률은 상토별 차이가 뚜렷하였으며 E와 F 상토는 용기용수량이 낮고 기상률이 높아 상토의 수분관리에 어려움이 있을 것으로 판단하였다. 피트모스가 혼합된 상토 A, B, 및 D의 질소농도가 높았고, 왕겨를 혼합한 상토 E와 F의 질소 및 인산 농도가 낮았다. 또한 코코피트가 혼합된 상토가 피트모스가 혼합된 상토 보다 K 농도가 월등히 높았다. A상토에서 '설향' 자묘를 재배한 결과 약 13mm에서 관부직경의 회귀선이 형성되어 가장 굵었고, F, B와 C 상토에서 육묘한 자묘도 관부 직경의 회귀선이 약 10mm 이상에서 형성되고 있어 자묘의 생육에 바람직하다고 판단하였다. '설향' 자묘의 생체중은 A 상토에서 육묘한 경우 식물체당 10g 후반에서 회귀선이 형성되었지만, C, F, D, E, 그리고 B 상토의 순으로 가벼워졌다. '설향' 자묘의 건물중도 생체중과 유사한 경향을 보였으며 A, C 및 F 상토에서 비교적 건물중 생산량이 많았고, B 상토에서 적었다. 생체중과 건물중 생산량이 많을 경우 보편적으로 식물이 건전한 생육을 하고 있음을 의미하며, 이러한 판단을 적용할 때 A, C 및 F 상토가 자묘생육을 위해 바람직하다고 판단하였다.