• 제목/요약/키워드: plastic spring

검색결과 186건 처리시간 0.017초

Elasto-plastic Analysis of Circular Cylindrical Shell under Horizontal Load by Rigid-bodies Spring Model

  • 박강근
    • 한국공간구조학회논문집
    • /
    • 제6권3호
    • /
    • pp.87-92
    • /
    • 2006
  • This paper is a study on the experiment and elasto-plastic discrete limit analysis of reinforced concrete circular cylindrical shell by the rigid-bodies spring model. In the rigid bodies-spring model, each collapsed part or piece of structures at the limiting state of loading is assumed to behave like rigid bodies. The present author propose new discrete elements for elasto-plastic analysis of cylindrical shell structures, that is, a rectangular-shaped cylindrical element and a rhombus-shaped cylindrical element for the improvement and expansion of this rigid-bodies spring model. In this study, it is proposed how this rigid element-bodies spring model can be applied to the elasto-plastic discrete limit analysis of cylindrical shell structures. Some numerical results of elasto-plastic discrete limit analysis and experimental results such as the curve of load-displacement and the yielding and fracturing pattern of circular cylindrical shell under horizontal load are shown.

  • PDF

Failure mechanisms of a rigid-perfectly plastic cantilever with elastic deformation at its root subjected to tip pulse loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • 제2권2호
    • /
    • pp.141-156
    • /
    • 1994
  • In this paper, the effect of material elasticity was evaluated through a simple model as proposed by Wang and Yu (1991), for yield mechanisms of a cantilever beam under tip pulse loading. The beam was assumed rigid-perfectly plastic but instead of the usual fully clamped constraints at its root, an elastic-perfectly plastic rotational spring was introduced there so the system had a certain capacity to absorb elastic energy. Compared with a rigid-perfectly plastic beam without a spring root, the present beam-spring model showed differences in the initial plastic hinge position and the minimum magnitude of the dynamic force needed to produce a plastic failure. It was also shown that various failure responses may happen while the hinge travels along the beam segment towards the root, rather than a unique response mode as in a rigid perfectly plastic analysis.

유한요소법을 이용한 Valve-Spring Retainer의 공정해석 (Application of F.E.M to the Forming Process of Valve-Spring Retainer)

  • 오현석;박성호;황병복
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.57-68
    • /
    • 1995
  • A design methodology is applied for manufacturing the valve-spring retainer component. The design criterion is the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic TEM has been applied to simulate the conventional five-stage manufacturing processes, which include mainly backward extrusion and heading process. Simulations of one step process from selected stocks to the final product shape are performed for a possibly better process than the conventional one.

  • PDF

자동차용 플라스틱 연료튜브의 복합 벤딩에 대한 스프링백 (Spring Back on the Compound Bending of the Plastic Fuel Tube for Automobile)

  • 문찬용;박정식;정영득
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.51-55
    • /
    • 2003
  • Recently the requirements for light weight and high performance of the automobile have increased. Especially, the plastic fuel tube makers have made their efforts to dove]op the various plastic fuel tube module with not only dimensional accuracy but also cost competitiveness. The experiment is performed to investigate spring backs for PA12 plastic fuel tubes in case of compound bending. In the experiment, steam bending process is adopted as bending method. In this study, the results we obtained are used to design the bending fixtures and the compound bending system.

  • PDF

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

강체요소법에 의한 철근 콘크리트 프리캐스트 대형판 접합부의 탄소성해석 (Elasto-plastic Analysis of Reinforced Concrete Precast Large Panel Connections by Rigid Element Method)

  • 박강근;김용태;권택진
    • 한국공간구조학회논문집
    • /
    • 제1권2호
    • /
    • pp.111-116
    • /
    • 2001
  • This paper is a study on the elasto-plastic analysis of reinforced concrete precast large panel connections by rigid element spring model. In the analysis of rigid element spring model, each collapsed part or piece of structures at limiting state of loading is assumed to behave like rigid bodies. The present author propose new elements for the improement and expansion of the rigid element spring model. In this study, it is proposed how the rigid element method can be applied to the elesto-plastic analysis of precat large panel connections. Some numerical results of analytical modeling and load displacement curves are shown.

  • PDF

스프링 체결나사의 응력부식균열 수명예측 (Stress Corrosion Cracking Lifetime Prediction of Spring Screw)

  • 고승기;류창훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

일체형원자로 SMART의 나선형 증기발생기 전열관 코일링 시 스프링백 최소화 방안 (Minimization of the Spring back in the Coiling Process of the Helical Steam Generator Tubes of Integral Reactor SMART)

  • 김용완;김종인;장문희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.837-842
    • /
    • 2000
  • In the coiling process of helical steam generator tubes of integral reactor SMART, a considerable amount of spring back, which induces dimensional inaccuracy and difficulty in fabrication, has been arised. In this research, an analytical model was derived to evaluate the amount of the spring back for steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.

  • PDF

지하 터파기 버팀시스템의 전산해석 사례 및 평가 (Evaluation of Computerized Methods for Stepwise Underground Excavation and Support System)

  • 장찬수;우홍기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.289-311
    • /
    • 1991
  • Analysis of supported excavation system by Elasto-Plastic Isoparametric Finite Element Method and Elasto-Plastic Beam Method have been conducted for the simulation of stepwise underground excavation. Conventional methods, fixed Supported Beam and Spring Supported Beam method, also have been examined and compared with the results of elasto-plastic beam method and field data. Except unavoidable result of upward ground settlement near the top of retaining wall and relatively high bending moment of wall at each excavation level, satisfactory results have been derived using elasto-plastic isopara metric finite element method. The results from elasto-plastic beam analysis program, developed by the author, are proved to be fit field data in acceptable variance as shown in the paper. Displacement and bending moment, of the wall by conventional methods, both fixed supported beam and spring supported beam, are always underestimated than field data, and attention must be given that the diffence increases with deeper excavation depth and lower horizontal subgrade reaction of the ground.

  • PDF

비틀림 진동감쇠기용 슬리브 스프링의 제조 공정 해석 (A Process Analysis for Manufacturing the Sleeve Spring of the Torsional Vibration Damper)

  • 황범철;배원병;김철
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.94-101
    • /
    • 2009
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, it is necessary to establish preventive measures to diminish the torsional vibration. The sleeve spring type damper is one of the preventive measures for reducing the torsional vibration. In this study, 2-roll bending process was proposed to manufacture sleeve spring; The program to calculate the initial radius including springback effect was developed and the FEA method to analyze elasto-plastic problem was verified through analysis of 90 degree bending process. The elasto-plastic analysis of 2-roll bending process was carried out by the FEA method verified to set a new criterion, and the new process design parameter(contact angle) in the 2-roll bending process was proposed.