• Title/Summary/Keyword: plastic modulus

Search Result 284, Processing Time 0.03 seconds

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

Analysis of Residual Stress through a Recovery Factor of Remnant Indents Formed on Artificially Stressed Metallic Glass Surfaces (응력상태의 비정질 표면에 형성된 압입흔적 회복인자를 이용한 잔류응력 분석)

  • Lee, Yun-Hee;Yu, Ha-Young;Baek, Un-Bong;Nahm, Seung-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • An application of the instrumented indentation technique has been expanded from the measurements of hardness and elastic modulus to the analysis of residual stress. A slope of the indentation loading curve increases (or decreases) according to compressive (or tensile) residual stress. A theoretical equation has been established for quantifying residual stress from the slope change. However, a precise observation of the remnant indents is indispensible because the theoretical approach needs actual contact information. In addition, the conventional hardness test is still used for predicting the residual stress distribution of welded joints. Thus, we observed the three-dimensional morphologies of the remnant indents formed on artificial stress states and analyzed stress effects on morphological recovery of the indents. First, a depth recovery ratio, which has been regarded as a sensitive stress indicator, did not show a clear dependency with the residual stress. Thus an analysis on volumetric recovery was tried in this study and yielded a inverse proportional behavior with the residual stress. In addition, an elastic to plastic volume recovery ratio showed more significant correlation with the residual stress.

FE Analysis of Rock-Socketed Drilled Shafts Using Load Transfer Method (유한요소해석을 통한 암반에 근입된 현장타설말뚝의 하중전이거동 분석)

  • Seol, Hoon-Il;Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.33-40
    • /
    • 2008
  • The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load-transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using the 2D elasto-plastic finite element analysis. Slippage and shear load transfer behavior at the pile-soil interface are investigated by using a user-subroutine interface model (FRlC). It is shown that the coupled soil resistance provides the influence of pile toe settlement as the shaft resistance is increased to an ultimate limit state. The results show that the coupling effect is closely related to the value of pile diameter over rock mass modulus (D/$E_{mass}$) and the ratio of total shaft resistance against total applied load ($R_s$/Q). Through comparisons with field case studies, the 2D numerical analysis reseanably presented load transfer of pile and coupling effect due to the transfer of shaft shear loading, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.

Evaluation of Failure Mode in Concrete Beam Restrengthened with GFRP with Various Initial Conditions (GFRP로 보강된 다양한 초기 조건의 콘크리트보의 파괴 거동 평가)

  • Jin-Won Nam;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2023
  • Various failure modes occur in the concrete beams reinforced with GFRP(Glass Fiber Reinforced Plastic) under initial condition and repairing patterns. In this study, the failure behaviors of concrete beams restrengthened with GFRP sheet with slightly higher elastic modulus than concrete were investigated. For the tests, concrete beams with 24 MPa were manufactured, and the effects of initial notch, overlapping, end-strip reinforcement, and fiber anchors were analyzed on failure load. The cases of GFRP overlap around notch and the initial notch showed increasing failure loads similar to those of normal restrengthened case since the epoxy of the saturated GFRP sufficiently repaired the notch area. Compared to the control case without restrengthening of GFRP, the concrete with initial notch showed 0.78 of loading ratio and normal restrengthening showed 4.43~5.61 times of increasing ratio of failure loading, where interface-debonding from flexural crack were mainly observed. The most ideal failure behavior, break of GFRP, was observed when end-strip over 1/3 height from bottom and fiber anchor were installed, which showed increasing failure load over 150 % to normal restrengthening.

A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology (고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.55-60
    • /
    • 2023
  • The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.

Buckling Sensitivity of Laminated Composite Pipes Under External Uniform Pressure Considering Ply Angle (등분포하중을 받는 복합재료 관로의 적층각 변화에 따른 좌굴 민감도 분석)

  • Han, Taek Hee;Na, Tae Soo;Han, Sang Yun;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.123-131
    • /
    • 2007
  • The buckling behavior of a fiber reinforced plastic pipe was researched. When a cylindrical structure is made of isotropic material, it shows two dimensional buckled shape which has same deformed section along the longitudinal direction. But an anisotropic cylindrical structure shows three dimensional buckled shape which has different deformed section along the longitudinal direction. Because the modulus of elasticity is varied in a certain direction when ply angles are changed, the strength of a pipe are changed as ply angles are changed. In this study, the limitation of two dimensional and three dimensional buckling mode was investigated and the buckling strength of a laminated composite pipe was evaluated.

Bio-based Polypropylene Composites: Plausible Sustainable Alternative to Plastics in Automotive Applications

  • Ji Won Kwon;Sarbaranjan Paria;In Soo Han;Hyeok Jee;Sung Hwa Park;Sang Hwan Choi;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.51-63
    • /
    • 2024
  • Polypropylene (PP) is a commodity plastic that is widely used owing to its cost-effectiveness, lightweight nature, easy processability, and outstanding chemical and thermomechanical characteristics. However, the imperative to address energy and environmental crises has spurred global initiatives toward a circular economy, necessitating sustainable alternatives to traditional fossil-fuel-derived plastics. In this study, we conducted a series of comparative investigations of bio-based polypropylene (bio-PP) blends with current PP of the same and different grades. An extrusion-based processing methodology was employed for the bio-PP composites. Talc was used as an active filler for the preparation of the composites. A comparative analysis with the current petroleum-based PP indicated that the thermal properties and tensile characteristics of the bio-PP blends and composites remained largely unaltered, signifying the feasibility of bio-PP as a potential substitute for the current PP. To achieve a higher Young's modulus, elongation at break (EAB), and melt flow index (MFI), we prepared different composites of PP of different grades and bio-PP with varying talc contents. Interestingly, at higher biomass contents, the composites exhibited higher MFI and EAB values with comparable Young's moduli. Notably, the impact strengths of the composites with various biomass and talc contents remained unaltered. In-depth investigations through surface analysis confirmed the uniform dispersion of talc within the composite matrix. Furthermore, the moldability of the bio-PP composites was substantiated by comprehensive rheological property assessments encompassing shear rate and shear viscosity. Thus, from these outcomes, the fabricated bio-PP-based composites could be an alternative to petroleum-based PP composites for sustainable automobile applications.

The Effects of Hot Water Extraction of Wood Meal and the Addition of CaCl2 on Bending Strength and Swelling Ratio of Wood-Cement Board (목질(木質)의 열수추출(熱水抽出) 및 CaCl2 첨가(添加)가 목질(木質)-세멘트 보드의 휨강도(强度) 및 팽윤율(膨潤率)에 미치는 영향(影響))

  • Ahn, Won-Yung;Shin, Dong-So;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.49-53
    • /
    • 1985
  • The effects of pre-treatments, the hot water extraction of wood meal and the addition of chemical ($CaCl_2$) to wood-cement water system on the properties of wood-cement composite such as modulus of rupture (MOR), modulus of elasticity (MOE), water sorption ratio and swelling ratio of resulting boards were studied in this experiment. The wood meals through 0.83mm(20 mesh) and retained on 0.42mm(35 mesh) screen were prepared from Pinus densiflora S. at Z. and Larix leptolepsis G. For hot water extraction, 500 grams of wood meal for each species were heated to boiling with 1,500ml of distilled water in 2-liter beaker for 6 hours. Every 2 hours, the wood meals were washed with boiling distil1ed water and reheated to boiling again. After 6 hours boiling, the boiled wood particles were collected by pouring this particles on 200 mesh screen. The collected particles then washed twice with hot distilled water and dried for 24 hours in an oven at $109{\pm}20^{\circ}C$. A mixture of 663.4 grams of cement with 331.7 grams of wood meal based on oven-dry weight were dry-mixed in a plastic vessel. The mixture was kneaded with 497.6ml of distilled water in the ratio of 1.5ml of water to a gram of wood meal. To add calcium chloride to the mixture as an accelerator, $CaCl_2$ 4% solution by weight per volume, was added to pine-or larch-cement board in the ratio of 3% to cement weight. To set wood-cement board, this mixture was clamped at 30cm ${\times}$ 30cm, in thickness of 1.5cm for 3 days at room temperature, declamped and then placed at open condition for 17 days. The target density was 1.0. The four specimens sized to 5cm in width and 28cm in length were used for MOR and MOE test for each treatment. After MOR test, the tested specimens were cut to the size of 5cm ${\times}$ 5cm for water sorption and swelling test. The twenty specimens used to measure the water sorption ratio (soaking 24 hours) and ten of these were used for swelling ratio measurement The results obtained were as follows: 1) Larch was not suitable for wood-cement boards because larch-cement board developed no strength, but pine showed 97.9kg/$cm^2$ by hot water extraction. 2) To increase MOR, hot water extraction was more effective than the addition of $CaCl_2$ in pine and larch because the $CaCl_2$ addition was seemed to speed up the ratio of cement hydration without reacting with the wood substances. 3) The water sorption ratio was lowered by the addition of $CaCl_2$ to wood-cement system because the chemical additive accelerated the rate of cement hydration. 4) In pine-cement board, the swelling ratio from 0.37 to 0.42 percent was observed in length and the swelling ratio from 0.88 to 2.0 percent in thickness. As a rule, the swelling ratio of wood-cement board was very low and the swelling ratio in thickness was higher than in length.

  • PDF

Rheological properties of dental resin cements during polymerization (치과용 레진 시멘트의 유변학적 성질)

  • Lee, Jae-Rim;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • Purpose: The purpose of this study was to observe the change of viscoelastic properties of dental resin cements during polymerization. Materials and methods: Six commercially available resin cement materials (Clearfil SA luting, Panavia F 2.0, Zirconite, Variolink N, RelyX Unicem clicker, RelyX U200) were investigated in this study. A dynamic oscillation-time sweep test was performed with AR1500 stress controlled rheometer at $32^{\circ}C$. The changes in shear storage modulus (G'), shear loss modulus (G"), loss tangent (tan ${\delta}$) and displacement were measured for twenty minutes and repeated three times for each material. The data were analyzed using one-way ANOVA and Tukey's post hoc test (${\alpha}$=0.05). Results: After mixing, all materials demonstrated an increase in G' with time, reaching the plateau in the end. RelyX U200 demonstrated the highest G' value, while RelyX Unicem (clicker type) and Variolink N demonstrated the lowest G' value at the end of experimental time. Tan ${\delta}$was maintained at some level and reached the zero at the starting point where G' began to increase. The tan ${\delta}$and displacement of the tested materials showed similar pattern in the graph within change of time. The displacement of all 6 materials approached to zero within 6 minutes. Conclusion: Compared to other resin cements used in this study, RelyX U200 maintained plastic property for a longer period of time. When it completed the curing process, RelyX U200 had the highest stiffness. It is convenient for clinicians to cement multiple units of dental prostheses simultaneously.

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.