DOI QR코드

DOI QR Code

Rheological properties of dental resin cements during polymerization

치과용 레진 시멘트의 유변학적 성질

  • Lee, Jae-Rim (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Jai-Bong (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Han, Jung-Suk (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Sung-Hun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Yeo, In-Sung (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Ha, Seung-Ryong (Department of Dentistry, Ajou University, School of Medicine) ;
  • Kim, Hee-Kyung (Department of Prosthodontics, Veterans Health Service Medical Center Seoul)
  • 이재림 (서울대학교 치과대학 치과보철학교실) ;
  • 이재봉 (서울대학교 치과대학 치과보철학교실) ;
  • 한중석 (서울대학교 치과대학 치과보철학교실) ;
  • 김성훈 (서울대학교 치과대학 치과보철학교실) ;
  • 여인성 (서울대학교 치과대학 치과보철학교실) ;
  • 하승룡 (아주대학병원 치과학교실) ;
  • 김희경 (서울보훈병원 치과진료센터 보철과)
  • Received : 2014.03.10
  • Accepted : 2014.04.17
  • Published : 2014.04.30

Abstract

Purpose: The purpose of this study was to observe the change of viscoelastic properties of dental resin cements during polymerization. Materials and methods: Six commercially available resin cement materials (Clearfil SA luting, Panavia F 2.0, Zirconite, Variolink N, RelyX Unicem clicker, RelyX U200) were investigated in this study. A dynamic oscillation-time sweep test was performed with AR1500 stress controlled rheometer at $32^{\circ}C$. The changes in shear storage modulus (G'), shear loss modulus (G"), loss tangent (tan ${\delta}$) and displacement were measured for twenty minutes and repeated three times for each material. The data were analyzed using one-way ANOVA and Tukey's post hoc test (${\alpha}$=0.05). Results: After mixing, all materials demonstrated an increase in G' with time, reaching the plateau in the end. RelyX U200 demonstrated the highest G' value, while RelyX Unicem (clicker type) and Variolink N demonstrated the lowest G' value at the end of experimental time. Tan ${\delta}$was maintained at some level and reached the zero at the starting point where G' began to increase. The tan ${\delta}$and displacement of the tested materials showed similar pattern in the graph within change of time. The displacement of all 6 materials approached to zero within 6 minutes. Conclusion: Compared to other resin cements used in this study, RelyX U200 maintained plastic property for a longer period of time. When it completed the curing process, RelyX U200 had the highest stiffness. It is convenient for clinicians to cement multiple units of dental prostheses simultaneously.

연구 목적: 본 연구의 목적은 중합 과정 중 치과용 레진 시멘트의 점탄성 성질의 변화를 관찰하기 위한 것이다. 연구 재료 및 방법: 6 종류의 레진시멘트(Clearfil SA luting, Panavia F 2.0, Zirconite, Variolink N, RelyX Unicem clicker, RelyX U200)가 이번 실험에 사용되었다. AR1500 stress controlled rheometer를 이용해 $32^{\circ}C$에서 동적 시간 경과 시험(dynamic oscillation time sweep test)이 시행되었다. 각각의 레진시멘트의 전단 저장 계수(G'), 전단 손실 계수(G"), 손실 탄젠트(tan ${\delta}$), 변위량을 20분 동안 3번씩 반복 측정하였다. 측정 결과는 일원배치분석 및 Tukey's hoc test로 사후 검정을 시행하였다(${\alpha}$=0.05). 결과: 모든 레진 시멘트는 혼합 후 시간에 따라 G' 값이 증가하였고, 최종적으로 안정상태에 도달하였다. 실험 종료 시점에서 RelyX U200은 가장 높은 G'값을 나타냈고, RelyX Unicem (clicker type)과 Variolink N이 가장 낮은 G'값을 나타냈다. Tan ${\delta}$와 변위량은 일정 수준의 값을 유지하다가 G'이 증가하기 시작하는 시점에서 0에 도달하였다. 이는 변위량이 0에 도달하는 지점과 거의 일치하였으며, 그 시간은 6분 내외였다. 결론: 본 연구에서 RelyX U200은 다른 레진 시멘트와 비교하여 가장 오랜 시간 동안 소성을 유지하고, 경화 완료 후 가장 높은 강도(rigidity)를 보였다. 따라서 여러 개의 보철물을 동시에 합착해야 하는 경우에 RelyX U200이 유용할 것으로 사료된다.

Keywords

References

  1. Jorgensen KD, Esbensen AL. The relationship between the film thickness of zinc phosphate cement and the retention of veneer crowns. Acta Odontol Scand 1968;26:169-75. https://doi.org/10.3109/00016356809026130
  2. Wilson PR. The effect of die spacing on crown deformation and seating time. Int J Prosthodont 1993;6:397-401.
  3. Van Nortwick WT, Gettleman L. Effect of internal relief, vibration, and venting on the vertical seating of cemented crowns. J Prosthet Dent 1981;45:395-9. https://doi.org/10.1016/0022-3913(81)90099-8
  4. Judge RB, Wilson PR. The effects of oscillating forces upon the flow of dental cements. J Oral Rehabil 1999;26:892-9. https://doi.org/10.1046/j.1365-2842.1999.00459.x
  5. Piemjai M. Effect of seating force, margin design, and cement on marginal seal and retention of complete metal crowns. Int J Prosthodont 2001;14:412-6.
  6. J􀝚rgensen KD. Factors affecting the film thickness of zinc phosphate cements. Acta Odonto Scand 2009;18:479-90.
  7. de Freitas Oliveira J, Ishikiriama A, Vieira DF, Mondelli J. Influence of pressure and vibration during cementation. J Prosthet Dent 1979;41:173-7. https://doi.org/10.1016/0022-3913(79)90303-2
  8. Park EK, Song KW. Rheological evaluation of petroleum jelly as a base material in ointment and cream formulations with respect to rubbing onto the human body. Korea-Aust Rheol J 2010;22:279-89.
  9. Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: A review of the current literature. J Prosthet Dent 1998;80:280-301. https://doi.org/10.1016/S0022-3913(98)70128-3
  10. Diaz-Arnold AM, Vargas MA, Haselton DR. Current status of luting agents for fixed prosthodontics. J Prosthet Dent 1999;81:135-41. https://doi.org/10.1016/S0022-3913(99)70240-4
  11. White SN, Yu Z. Physical properties of fixed prosthodontic, resin composite luting agents. Int J Prosthodont 1993;6:384-9.
  12. Wilson AD, Lewis BG. The flow properties of dental cements. J Biomed Mater Res 1980;14:383-91. https://doi.org/10.1002/jbm.820140405
  13. Vlachodimitropoulos H, Wilson PR. Characterization of the development of elasticity in dental luting cements. J Dent 1998;26:173-6. https://doi.org/10.1016/S0300-5712(97)00002-X
  14. Osman SA, McCabe JF, Walls AW. Film thickness and rheological properties of luting agents for crown cementation. Eur J Prosthodont Restor Dent 2006;14:23-7.
  15. Lorton L, Moore BK, Swartz ML, Phillips RW. Rheology of luting cements. J Dent Res 1980;59:1486-92. https://doi.org/10.1177/00220345800590090501
  16. Kious AR, Roberts HW, Brackett WW. Film thicknesses of recently introduced luting cements. J Prosthet Dent 2009;101:189-92. https://doi.org/10.1016/S0022-3913(09)60026-3
  17. Cook WD, Brockhurst P. The oscillating rheometer-what does it measure? J Dent Res 1980;59:795-9. https://doi.org/10.1177/00220345800590050801
  18. Batchelor RF, Wilson AD. Zinc oxide-eugenol cements. I. The effect of atmospheric conditions on rheological properties. J Dent Res 1969;48:883-7. https://doi.org/10.1177/00220345690480054501
  19. Plant CG, Jones IH, Wilson HJ. Setting characteristics of lining and cementing materials. Br Dent J 1972;133:21-4. https://doi.org/10.1038/sj.bdj.4802869
  20. Vermilyea S, Powers JM, Craig RG. Rotational viscometry of a zinc phosphate and a zinc polyacrylate cement. J Dent Res 1977;56:762-7. https://doi.org/10.1177/00220345770560071001
  21. Pae AR, Lee HR, Kim HS. Effect of temperature on the rheological properties of dental interocclusal recording materials. Korea-Aust Rheol J 2008;20:221-6.
  22. Lee HO, Lee IB. Rheological properties of polyvinylsiloxane impression materials before mixing and during setting related to handling characteristics. Korea-Aust Rheol J 2012;24:211-9. https://doi.org/10.1007/s13367-012-0026-x
  23. Cook WD, Standish PM. Polymerization kinetics of resinbased restorative materials. J Biomed Mater Res 1983;17:275-82. https://doi.org/10.1002/jbm.820170206
  24. Barnes HA, Hutton JF, Walters K. An introduction to rheology, Amsterdam; Elsevier, 1989.