• Title/Summary/Keyword: plastic modulus

Search Result 284, Processing Time 0.028 seconds

EEFORMATION BEHAVIOR OF STAINLESS STEEL-CLAD ALUMINUM SHEET METALS UNDER UNIAXIAL TENSION (스테인리스 강 클리드 알루미늄 판재의 일축인장시 변형거동)

  • 최시훈;김근환;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.69-75
    • /
    • 1995
  • The deformation behavior of stainless steel-clad aluminum sheet metals under uniaxial tension has been investigated. The differences in mechanical properties such as elastic modulus, flow stress and plastic strain ratio, of component layers of the composite sheet gave rise to warping of the tensile specimens. The warping has been analyzed by FEM and the total force and momentum equilibria. The analyzed radii of curvature of the warped specimens were smaller than the measured data possibly due to elastic recovery during unloading. The differences in mechanical properties may also give rise to transverse stresses in the component layers. The transverse stresses have been analyzed on the assumption of isostrain and by the FEM in which the warping has been taken into account. The transverse stresses calculated by the FEM were lower than those by the isostrain hypothesis due to stress relaxation by the warping and turned out to be negligible compared with the longitudinal stresses. Consequently, the flow stresses of the composite sheets follow the rule of mixtures.

  • PDF

Deformation Analysis and Experimental Verification of 80mm Optical Disk Holder (80 mm 광 디스크 홀더의 변형량 해석 및 실험적 검증)

  • Kim, Jin-Gon;Choi, Han-Kook;Park, In-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.159-164
    • /
    • 2000
  • In this study, the deformation analysis of 80mm optical disk holder considering the creep characteristics of plastic materials has been conducted and experimentally verified. It is very important to remedy the unrecoverable creep deformation and relaxation of holding force of an optical disk holder for the reliability of DVDR-P, DVD-ROM. A disk holder inserted in a cartridge case has been kept in the chamber with $60^{\circ}C$ temperature and 90% humidity for 24 hours. After storage test, the arm span and holding force of a disk holder have been measured after 24 hours at room temperature and normal humidity. The predicted results are in good agreement with experimentally measured one.

  • PDF

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

A study of instrumented indentation by finite element analysis

  • Le Minh-quy;Kim Seock-sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.248-258
    • /
    • 2003
  • Finite element computations were carried out to study the indentation by rigid cone with half-angle of $70.3^{\circ}$ for 72 different combinations of elasto-plastic properties that cover the wide range of mechanical parameters of common engineering solid materials. The dimensional analysis and representative strain concept were used in the analysis. It was shown that for the same representative strain value, the loading curvature C can be formulated under two different forms, which are based on two alternative dimensionless functions. The present study's one is simpler than the other previously found by other authors using the similar approach. For a wide range of material's parameters, the hardness-modulus ratio should be a parabolic function of ${\sigma}E$, rather than a power law function earlier proposed.

  • PDF

A Study on Elastic-Plastic Deformation and 3-D FEA for the Berkovich Nano-Indentation (베르코비치 나노인덴테이션에 대한 3차원 유한요소해석과 탄소성 변형에 관한 연구)

  • Yang Hyeon-Yun;Kim Ji-Soo;Yun Jon-Do;Cho Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.167-173
    • /
    • 2005
  • The Berkovich nano-indentation is an indentation test method analyzing mechanical properties of materials such as hardness and elastic modulus. The length scale of the penetration is measured in nanometers. Therefore, this method becomes widely useful for analyzing the mechanical property of thin film which can not be measured before. In this paper, comparing two results of the load-displacement curve obtained by the Berkovich nano-indentation and the 3-D finite element analysis, it was confirmed that the 3-D finite element analysis is useful. The phenomenon of pile-up and sink-in due to material properties was discussed by the finite element analysis.

Improved phenomenological modelling of transient thermal strains for concrete at high temperatures

  • Nielsen, Claus V.;Pearce, Chris J.;Bicanic, Nenad
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.189-209
    • /
    • 2004
  • Several extensions to the Thelandersson phenomenological model for concrete under transient high temperatures are explored. These include novel expressions for the temperature degradation of the elastic modulus and the temperature dependency of the coefficient of the free thermal strain. Furthermore, a coefficient of thermo mechanical strain is proposed as a bi-linear function of temperature. Good qualitative agreement with various test results taken from the literature is demonstrated. Further extensions include the effects of plastic straining and temperature dependent Poisson's ratio. The models performance is illustrated on several simple benchmark problems under uniaxial and biaxial stress states.

Estimation of Reinforced Roadbed Thickness based on Experimental Equation (노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정)

  • Shin, Eun-Chul;Yang, Hee-Saeng;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF

Finite Element Modeling of Strain Localization Zone in Concrete (콘크리트 변형률국소화영역의 유한요소모델링)

  • 송하원;나웅진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.53-60
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develope a consistent algorithm for the finite element modeling of localized zone in the analysis of the strain-localization in concrete. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion which can consider nonlinear strain softening behavior of concrete after peak-stress is introduce. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is derived. Using finite element program implemented with the developed algorithms, strain localization behaviors for the different sizes of concrete specimen under compression are simulated.

  • PDF

Experimental Study on Dynamic Characteristics of Vibration-Controlled Concrete Beam (제진 콘크리트 보의 동적특성에 관한 실험적 연구)

  • 정영수;최우성;이대형
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.185-193
    • /
    • 1997
  • 본 연구는 각종 제진재료를 이용하여 진동을 억제할 수 있는 콘크리트를 개발하여 각종 건설공사에서 흔히 발생할 수 있는 진동공해문제를 억제하고자 하며 아울러 폐기물의 재활용차원에서 폐자재를 이용하여 유용한 제진콘크리트를 개발하고자 하는데 그 목적이 있다. 우선, 제진재료를 이용한 압축강도 (200kg/$\textrm{cm}^2$)이상의 콘크리트 배합비를 찾기 위하여 24배치의 예비실험을 수행하였으며, 선정된 적정배합비에 따른 제진재료를 이용한9개의 진동시험체보를 제작하여 보의 구조적 및 재료적 동적특성 즉 1차 공명진동수와 동적 휨강성 및 감쇠비를 측정하여 제진효과를 조사하였다. 그리고 압축강도에 의한 각 시험체의 균열모멘트를 추정하여 재하하중과 균열모멘트비(M/Mcr)에 따른 하중단계별 동적특성값을 살펴보았다. 제진재료로서는 라텍스(Latex), 고무분말(Rubber Powder)그리고 플라스틱 레진( Plastic Resin)등을 사용하였고, 재료적, 구조적 진동감쇠효과를 파악하고자 KS F2437규정과 진동파의 속도법을 사용하였으며, 감쇠비 측정은 Frequency Spectrum 곡선에 대한 Polynomial Curvefitting 방법과 기하학적 해석방법을 이용하여 각각의 결과를 비교.분석하였다.

Mechanical Properties and Water Absorption of Rice Starch-Filled Linear Low Density Polyethylene

  • Wahab, Mohammad A.;Mottaleb, Mohammad A.
    • Macromolecular Research
    • /
    • v.9 no.6
    • /
    • pp.297-302
    • /
    • 2001
  • Rice starch was incorporated into linear low density polyethylene (LLDPE) using a Brabender Plastic-Corder internal mixer at a temperature of 140$\^{C}$ and 40 rpm. The starch loading was varied from 0 to 30% with 5 intervals. Studies on brabender torque development, mechanical properties and water absorption were investigated. The starch loading did not influence the brabender torque significantly. With respect to mechanical properties; the tensile strength and elongation at break decrease with increasing starch loading. The Young's modulus also increases with the starch filling. Mechanical properties were deteriorated as the starch absorbed moisture. The rate of water absorption was dependent on the starch filling in the composites. The scanning electron microscope (SEM) analysis was performed for the tensile fracture surfaces and it revealed the starch agglomeration and a poor dispersion of starch in the LLDPE matrix.

  • PDF