• 제목/요약/키워드: plastic instability

검색결과 120건 처리시간 0.025초

최근 8년간 본교실에서 시행한 악교정수술의 임상적 검토 (CLINICAL STUDY ON ORTHOGNATHIC SURGERY FOR 8 YEARS IN OUR DEPARTMENT)

  • 권대근;이상한
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 1995
  • 1986년 1월부터 1993년 12월까지 8년간 외과적 교정술을 시행한 117 증례에대하여 임상적인 관찰을 시행하였다. 1) 남녀 성비는 1:1.4로 여자가 많았으며 평균연령은 23.0세였다. 2) 악교정수술을 받기위하여 내원한 환자의 진단에 따른 분류를 보면 하악 전들증의 경우가 87증례(75.0%)로 주종을 이루고 있었다. 3) 수술방법중 하악단독수술은 88증례, 상악골 단독수술은 6증례, 상하악 동시이동술은 23증례였으며 이중 하악지 시상골절단술이 사용된 경우가 84증례(71.8%)로 가장 많았다. 4) 골편의 고정을 위하여 강선고정보다 Miniplate나 Screw 를 이용한 고정이 점차 선호되고 있으며 전체수술에서 견고고정의 비율은 66.0%였다. 5) 본 교실에서는 외가적 교정수술 환자를 대상으로 1992년 2월부터 저혈식 자가수혈을 이용하고 있으며 One Jaw surgery 에서는 2 pints, Two Jaw surgery 에서는 3 pints를 준비하고 잇다. 6) 악교정수술의 합병증으로는 하순지각마비등의 신경손상이 전체수술의 63증례(53.8%)로 가장 많았으며 골편의 잘못된 위치, 과두위치보존의 실패, 견고고정의 불안정등이 원인이 되어 5증례에서 재수술을 시행하였다.

  • PDF

하악골 골절의 치료에 있어 악간 고정법에 관한 고찰 (CONSIDERATIONS OF INTERMAXILLARY FIXATION METHODS IN THE MANAGEMENT OF MANDIBULAR FRACTURES)

  • 송경호;이슬기;정재안;신진업;김좌영;송상훈;양병은;최영준;김성곤
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권6호
    • /
    • pp.513-519
    • /
    • 2007
  • Typical surgical methods for the treatment of mandibular fractures include intermaxillary-fixation (IMF) for obtaining temporary intraoperative occlusion. Traditionally IMF has been achieved with arch-bars or interdental eyelet wiring. However, these techniques are time-consuming procedures, can produce periodontal damage, and are not well tolerated by the patient even under local anesthesia. Moreover, daily maintenance of oral hygiene is difficult for patients with an arch bar. Recently, intermaxillary fixation using intraoral skeletal anchorage screws (SAS) has been introduced for the treatment of mandibular fractures. This method solves the problems above, but they have the potential for tooth damage, screw fractures and intraoperative occlusal instability. In this study, patients with mandiblular fractures were divided into three groups. Group 1 was treated by IMF using archbars(both maxilla and mandible), Group 2 was treated with SAS(maxilla) and arch-bar (mandible), Group 3 was treated with SAS(both maxilla and mandible). The aim of this study was to evaluate the influence of the different IMF methods on periodontal tissue health and intraoperative occlusal rehabilitation about each groups, and to discuss the most favorable IMF method.

A feasibility study of using a 3D-printed tumor model scintillator to verify the energy absorbed to a tumor

  • Kim, Tae Hoon;Lee, Sangmin;Kim, Dong Geon;Jeong, Jae Young;Yang, Hye Jeong;Schaarschmidt, Thomas;Choi, Sang Hyoun;Cho, Gyu-Seok;Kim, Yong Kyun;Chung, Hyun-Tai
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3018-3025
    • /
    • 2021
  • The authors developed a volumetric dosimetry detector system using in-house 3D-printable plastic scintillator resins. Three tumor model scintillators (TMSs) were developed using magnetic resonance images of a tumor. The detector system consisted of a TMS, an optical fiber, a photomultiplier tube, and an electrometer. The background signal, including the Cherenkov lights generated in the optical fiber, was subtracted from the output signal. The system showed 2.1% instability when the TMS was reassembled. The system efficiencies in collecting lights for a given absorbed energy were determined by calibration at a secondary standard dosimetry laboratory (kSSDL) or by calibration using Monte Carlo simulations (ksim). The TMSs were irradiated in a Gamma Knife® IconTM (Elekta AB, Stockholm, Sweden) following a treatment plan. The energies absorbed to the TMSs were measured and compared with a calculated value. While the measured energy determined with kSSDL was (5.84 ± 3.56) % lower than the calculated value, the energy with ksim was (2.00 ± 0.76) % higher. Although the TMS detector system worked reasonably well in measuring the absorbed energy to a tumor, further improvements in the calibration procedure and system stability are needed for the system to be accepted as a quality assurance tool.

SG365강의 파괴저항특성과 찢어짐계수에 관한 연구 (A Study on the J-Resistance Characteristics and Material Tearing Modulus of SG365 steel)

  • 임만배;윤한기
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.75-80
    • /
    • 2001
  • The elastic plastic fracture toughness of this material is evaluated by the an unloading compliance method according to the ASTM E813-97 and E1152-97 method on the smooth and side groove 1CT specimens. The effect of smooth and side groove is studied on the material tearing modulus and characterizes the crack tip field under the plane stress and strain. SG-365 steel is observed that J-R curve and Tmat value decrease as 0%, 20%, 30%, and 40%. The 40% side grooved specimen is very useful in estimation of the $J_IC$. Because it is much easier than the smooth specimen to the onset of the ductile tearing by the R curve method. Besides. it improves the accuracy of toughness values, decreases the scattering the them and tunneling and shear lip by the side groove. Applicability of tearing modulus($T_J$ proposed by paris et al as instability panameter for this material is investigated.

  • PDF

Finite element evaluation of the strength behaviour of high-strength steel column web in transverse compression

  • Coelho, Ana M. Girao;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • 제10권5호
    • /
    • pp.385-414
    • /
    • 2010
  • In current European Standard EN 1993, the moment-rotation characteristics of beam-to-column joints made from steel with a yield stress > 460MPa are obtained from elastic design procedures. The strength of the joint basic components, such as the column web subject to local transverse compression, is thus limited to the yield resistance rather than the plastic resistance. With the recent developments of higher strength steel grades, the need for these restrictions should be revisited. However, as the strength of the steel is increased, the buckling characteristics become more significant and thus instability phenomena may govern the design. This paper summarizes a comprehensive set of finite element parametric studies pertaining to the strength behaviour of high-strength steel unstiffened I-columns in transverse compression. The paper outlines the implementation and validation of a three-dimensional finite element model and presents the relevant numerical test results. The finite element predictions are evaluated against the strength values anticipated by the EN 1993 for conventional steel columns and recommendations are made for revising the specifications.

모터와 브레이크의 동시구현에 기초한 다양한 햅틱효과의 제시 (Various Haptic Effects Based on Simultaneous Actuation of Motors and Brakes)

  • 권태범;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.602-608
    • /
    • 2005
  • In the virtual environment, force feedback to the human operator makes virtual experiences more realistic. To ensure the safe operation and enhance the haptic feeling, stability should be guaranteed. Both motors and brakes are commonly used for haptic devices. Motors can generate a torque in any direction, but they can make the system active during operation, thus leading to instability. Brakes can generate a torque only against their rotation, but they dissipate energy during operation, which makes the system intrinsically stable. Consequently, motors and brakes are complementing each other. In this research, a two degree-of-freedom (DOF) haptic device equipped with motors and brakes has been developed to provide better haptic effects. Each DOF is actuated by a pair of motor and brake. Modeling of the environment and the control method are needed to utilize both actuators. Among various haptic effects, contact with the virtual wall, representation of friction and representation of plastic deformation have been investigated extensively in this paper. It is shown that the hybrid haptic device is more suited to some applications than the motor-based haptic device.

Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper

  • Sateesh, B.;Maiti, Dipak K.
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.39-56
    • /
    • 2009
  • Vibration is an undesirable phenomenon in a dynamic system like lightly damped aerospace structures and active vibration control has gradually been employed to suppress vibration. The objective of the current investigation is to introduce an active torsional magneto-rheological (MR) fluid based damper for vibration control of a typical nose landing gear. They offer the adaptability of active control devices without requiring the associated large power sources. A torsional damper is designed and developed based on Bingham plastic shear flow model. The numerical analysis is carried out to estimate the damping coefficient and damping force. The designed damper is fabricated and an experimental setup is also established to characterize the damper and these results are compared with the analytical results. A typical FE model of Nose landing gear is developed to study the effectiveness of the damper. Open loop response analysis has been carried out and response levels are monitored at the piston tip of a nose landing gear for various loading conditions without damper and with MR-damper as semi-active device. The closed-loop full state feedback control scheme by the pole-placement technique is also applied to control the landing gear instability of an aircraft.

ANALYSIS OF NECKING DEFORMATION AND FRACTURE CHARACTERISTICS OF IRRADIATED A533B RPV STEEL

  • Kim, Jin Weon;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.953-960
    • /
    • 2012
  • This paper reports the irradiation effect on the deformation behavior and tensile fracture properties of A533B RPV steel. An inverse identification technique using iterative finite element (FE) simulation was used to determine those properties from tensile data for the A533B RPV steel irradiated at 65 to $100^{\circ}C$ and deformed at room temperature. FE simulation revealed that the plastic instability at yield followed by softening for higher doses was related to the occurrence of localized necking immediately after yielding. The strain-hardening rate in the equivalent true stress-true strain relationship was still positive during the necking deformation. The tensile fracture stress was less dependent on the irradiation dose, whereas the tensile fracture strain and fracture energy decreased with increasing dose level up to 0.1 dpa and then became saturated. However, the tensile fracture strain and fracture energy still remained high after high-dose irradiation, which is associated with a large amount of ductility during the necking deformation for irradiated A533B RPV steel.

AZ31 판재의 부풀림 성형 특성 (Blow forming characteristics of AZ31 sheet)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.99-102
    • /
    • 2006
  • In the present study, the blow forming characteristics of AZ31 sheet was investigated to test the feasibility of the practical application of wrought Mg alloys. Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. Shallow cups for the small electronics cases have been stamped with warm die system. However, some technical issues will challenge Mg forming when large parts are considered with warm die system over $200^{\circ}C$. Most of all, thermal expansion of die system will deteriorate a die accuracy. On the other hand, blow forming does not have a problem with inaccuracy with die system. In this study, tensile tests were followed by blow forming at various temperature and pressure. AZ31 sheet showed a superplastic deformation behavior with extensive grain boundary sliding at the temperature above $300^{\circ}C$. However, the deformation behavior was likely to differ depending on stress condition.

  • PDF

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.