• Title/Summary/Keyword: plastic film house

Search Result 220, Processing Time 0.025 seconds

Growth and salting properties influenced by culture methods, cultivars and storage packaging of kimchi cabbage (Brassica rapa) in spring

  • Lee, Jung-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.623-634
    • /
    • 2018
  • This experiment was conducted to determine the effects of the pre- and post-harvest variable factors on the processed product of kimchi cabbage. Two kimchi cabbage cultivars, namely 'Chungwang' and 'Dongpung,' were grown in a field and under a plastic greenhouse condition and stored at $5^{\circ}C$ after harvesting with and without low-density polyethylene (LDPE) film packaging. Growths were determined after harvesting while salting characteristics were determined after the processing and storage. The results show that the height, weight and leaf thickness were higher in kimchi cabbages grown in the greenhouse than those grown in the field. The plastic house culture increased the kimchi cabbage growth of the head weight, head height and leaf thickness compared with that of the open field culture. However, the osmolality and firmness were higher in the outdoor cultivated kimchi cabbages. Kimchi cabbage packed in film covered sacks and stored at $5^{\circ}C$ showed lower weight loss than unpacked cabbages during storage. Salt concentration and pH were also affected by the different pre- and post-harvest factors after salting the kimchi cabbages. Salt concentrations of the kimchi cabbage were influenced by various factors such as the cultivars, cultivation methods and storage covering. Though the present findings showed a limited difference in salt concentration and pH between the cultivars of kimchi cabbages, this study suggests that there is a relationship between processed agricultural products and their pre- and post-harvest methods.

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. I. Fluctuations of Temperature and Light Environment in the Multilayered Plastic House Grown Red Pepper (동계 Plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 I. 다중피복 고추육묘 시설내의 온도 및 광환경 영향)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.106-118
    • /
    • 1994
  • This study was conducted to analyze the effects of fluctuations in temperature, light intensity and soil temperature on the growth of red pepper seedlings in the nonheated plastic houses with various number of layers and in the open field. Relationship between the optimal environment and the growth of seedlings was discussed, and the maximum and minimum outdoor temperatures in Kwangju area from 1941 to 1985 were analyzed. The results obtained were as follows; 1. The minimum temperature in tunnel with quadruple coverings of P. E. film from December 20 to February 25 was decreased to 5$^{\circ}C$ mostly, where the exposure to chilling temperature could not be avoided during this period. The maximum temperature was increased to 33$^{\circ}C$ mostly and 42$^{\circ}C$ in peak, where some ventilation was needed. 2. The diurnal differences of inside temperature, increasing with number of layers, were 16 to 38$^{\circ}C$, while those of outside temperature were 5 to 1$0^{\circ}C$. 3. The cold injury in the quadruple coverings during winter occurred all the times below 12$^{\circ}C$ and as many as 200 times over 3$0^{\circ}C$, while effectiveness of thermal insulation in the multilayered nonheating plastic houses were clearly proved. 4. The inside light intensity was markedly reduced with the increment of layers and the minimum light intensity fallen down below the light compensation point for the growth of red pepper plants regardless of the number of layers. 5. Until 10 a. m., the temperature in the daytime during December 20 to mid - February showed below 10 to 12$^{\circ}C$ which was the limiting temperature for the growth of red pepper seedlings. After 4 p. m., the light intensity was sharply reduced despite of the air temperature kept over 12$^{\circ}C$. Therefore, limiting factors for the growth of red pepper seedlings were the temperature before 10 a. m. and the light intensity after 4 p. m. 6. The minimum soil temperature in quadruple coverings showed around 1$0^{\circ}C$ where the physiological damage for red pepper seedlings might be occurred. 7. The minimum outdoor temperatures from 1941 to 1985 was -19.4$^{\circ}C$, observed in the 5th January.

  • PDF

The Estimation of Transpiration Rate of Crops in Hydroponic Culture in the Plastic Greenhouse (열수지 해석에 의한 온실 수경재배 작물의 증산속도 추정에 관한 연구)

  • Nam, Sang-Woon;Kim, Moon-Ki
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.27-34
    • /
    • 1990
  • The main objective of this study was to find the relationship between transpiration rate and environmental factors for crops in hydroponic culture within plastic greenhouse by using the computer model developed from the heat balance around leaves of a crop. A computer model was developed and verified through comparison with the experimental results for lettuce in hydroponic culture in a polyethylene film house. The model may be extensively used for the water management and thermal environment study of crops in protected culture, if the supplemented studies for some crops would be accomplished.

  • PDF

Effect of LED Light Quality and Intensity on Growth Characteristics of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.61-61
    • /
    • 2020
  • This experiment was carried out using artificial bed soil and LED in the plastic film house(irradiation time: 07:00-17:00/day). Seedlings(n=63 per 3.3 m2) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity(40-160 µmol/m2/s). Average air temperature from April to September according to the light intensity test was 20.4℃-20.9℃. Average artificial bed soil temperature was 20.1℃-21.7℃. The test area where fluorescent lamp was irradiated tended to be somewhat lower than the LED irradiation area. The chemical properties of the test soil was as follows. pH levels was 6.6-6.7, EC levels 0.9-1.3 dS/m and OM levels 30.6-32.0%. The available P2O5 contents was 73.3-302.3 mg/kg. Exchangeable cations K and Ca contents were higher than the allowable ranges and mg content was high in the fluorescent lamp treatment. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PPFD(Photosynthetic Photon Flux Density) value, illuminance and solar irradiation. Fluorescent lamp treatment had high illuminance value, but PPFD and solar irradiation were lower than LED intensity 40 µmol/m2/s treatment. The photosynthetic rate increased(2.0-3.8 µmolCO2/m2/s) as the amount of light intensity increased, peaking at 120 µmol/m2/s, and then decreasing. The SPAD (chlorophyll content) value decreased as the amount of light intensity increased, and was the highest at 36.1 in fluorescent lamp treatment. Ginseng germination started on April 5 and took 14-17 days to germinate. The overall germination rate was 68.8-73.6%. The growth of aerial parts(plant height etc.) were generally excellent in the treatment of light intensity of 120-160 µmol/m2/s. The plant height was 41.9 cm, stem length was 24.1 cm, leaf length was 9.8 cm and stem diameter was 5.6 mm. The growth of underground part (root length etc.) was the best in the treatment with 120 µmol/m2/s of light intensity. Due to the root length was long(24.8 cm) and diameter of taproot was thick(18.7 mm), the fresh root weight was the heaviest at 24.8 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping-off caused by Rhizoctonia solani occurred 0.6-1.5% and incidence ratio of rusty root ginseng was 30.8-62.3%. It is believed that the reason for the high incidence of rusty root ginseng is that the amount of field moisture capacity of artificial bed soil is larger than the soil. Leaf discoloration rate was 13.7-32.3%.

  • PDF

Environmentally-friendly Control of Soil Nematode by Crashed-rape (Brassica naptus) seed (유채 종실을 이용한 뿌리혹선충의 친환경적 방제)

  • Kim, Hee-Kwon;Ma, Kyung-Cheol;Kim, Myeong-Seok;Bang, Geuk-Pil;Kim, Joung-Keun;Park, Min-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.282-286
    • /
    • 2010
  • The present studies were carried out for three years from 2007 until 2009 to control nematode and to increase yield of cucumber by crashed-rape seed application at polyethylene film house. Crashed-rape seed has a lot of glucosinolate. Myrosinase decompose gulcosinolate into isothiocyanate and thiocyanate when crashedrape seed go to decay at soil. Those chemical compounds act on poison to nematode at soil. When the crashedrape seed treated at soil, an amount of thiocyanate at soil was risen up. Thiocyanate of plot treated with 200 and 400 kg crashed-rape seed per 10a was 30 and 40 mg/kg, respectively. Nematode(meloidogyne spp) population at soil was 13 to 17 nematodes per dried soil 300g. Yield of cucumber increased 6 to 15 percent to be compared with control. While, Nematode(meloidogyne spp) population of control plot were 463 nematodes per dried soil 300 g. This level was much higher than 150 nematodes which can be brought about injury to plant. Even if the more an amount of crashed-rape seed application, the higher yield of cucumber and control effect of nematode. Consider economical efficiency, 200 kg of crashed-rape seed per 10a was the most effective. Therefore, we suggest applying 200 kg of crashed-rape seed per 10a to control soil nematode when culture cucumber at plastic film house.

Effect of Silicate Fertilizer on Oriental Melon in Plastic Film House (시설재배 참외에 대한 규산 비료 시용 효과)

  • Lee, Sung-Ho;Cho, Hyun-Jong;Shin, Hyun-Jin;Shin, Yong-Sup;Park, So-Deuk;Kim, Bok-Jin;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.407-416
    • /
    • 2003
  • Although the requirement and optimum soil level of Si for oriental melon are still not well understood, silicate fertilizer is commonly applied to the oriental melon in plastic film houses where soil silicate level is relatively high. In this research the effects of silicate fertilizer on growth, fruit yield and fruit quality of oriental melon, and soil properties were investigated in plastic film house where the soil available silicate was $212mg\;SiO_2\;kg^{-1}$. Silicate fertilizer was applied in the rates of 100, 200, and $300kg\;10a^{-1}$. The application of silicate fertilizer could not increase the early growth of oriental melon, and also the fruit yield and quality were not different among the treatments. Available Si and P contents in soils and also Si and P contents in leaf of oriental melon of the different treatments were not significantly different. In the relationship between total Si in oriental melon leaf and soil silicate extracted by 1 N sodium acetate, optimum soil available silicate level for oriental melon was found to be around $100mg\;SiO_2\;kg^{-1}$. These results indicate that the additional silicate fertilization in soils of available silicate higher than $100mg\;SiO_2\;kg^{-1}$ is unnecessary, and such application of silicate can not have any beneficial effect on the growth and fruit yield of oriental melon.

The Colonizing Routes of Aphis gossypii (Hemiptera: Aphididae) to Mandarine Citrus Trees Grown in a Non-heating Plastic-film House During the Early Season (무가온 시설재배 감귤에서 계절초기 목화진딧물 개체군의 정착경로에 관한 연구)

  • Kim, Tae Ok;Kwon, Soon Hwa;Park, Jeong Hoon;Oh, Sung Oh;Hyun, Seung Young;Kim, Doog-Soon
    • Korean journal of applied entomology
    • /
    • v.54 no.3
    • /
    • pp.247-255
    • /
    • 2015
  • The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) infests citrus orchards, causing sooty mold damage to the fruits. This study was conducted to investigate the colonizing route of A. gossypii in citrus orchards in a non-heating plastic-film house during the early season. The overwintering eggs of the aphids are frequently found on summer shoots of the citrus trees. The eggs were mostly those of Aphis citricola, without any A. gossypii when hatched. The colonization of citrus trees by alate A. gossypii in non-heating plastic-film houses was mainly observed twice, with advanced flight in late April and delayed flight in late May. The delayed flight was synchronized with the timing of the emergence of alate A. gossypii from the fundatrix generation in the holocyclic life cycle. During advanced flight in closed citrus orchards, alate A. gossypii were caught in yellow water traps installed in the fields, and the populations were found to originate from the surviving populations of the anholocyclic life cycle. Consequently, we concluded that citrus tree colonization with A. gossypii occurred during the advanced flight of the anholocyclic and the delayed flight of the holocyclic life cycle.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Post Harvest Cropping Impacts on Soil Properties in Continuous Watermelon (Citrullus lanatus Thunb.) Cultivation Plots (시설수박 연작지 토양특성에 대한 후작물 재배의 영향)

  • Ahn, Byung-Koo;Kim, Dae-Hyang;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.98-107
    • /
    • 2007
  • Most of plastic film house plots in Korea have salinity problems caused by salt accumulations associated with continuous cropping including the heavy applications of chemical fertilizers, and high evapotranspiration. The objective of this study was to investigate soil properties and watermelon (Citrullus lanatus Thunb.) productivity in plastic film houses as influenced by the short-term crop rotation in the continuous watermelon-cultivated soils. The short-term rotational crops selected were corn, Chinese cabbage, radish, young radish, lettuce, spinach, and onion. Soil pH increased in most plots where a short-term crop was added to the crop rotation, except where radish was added. The content of soil organic matter significantly decreased in the lettuce-cultivated plot. The available phosphorus content in the soils increased with the cultivations of spinach and onion. Exchangeable Ca and Mg tended to increase in most of plots where a short-term rotational crop was grown, whereas the exchangeable K was clearly reduced by more than 50% in the same plots. Cultivation of rotational crops during the post-harvest season significantly decreased the electrical conductivity (EC) and the concentrations of soluble anions, such as chloride ($Cl^-$), nitrate ($NO_3{^-}$), and sulfate ($SO{_4}^{2-}$) in the soils. In particular, the EC decrease was related with the decrease in soil $K^+$ to $Ca^{2+}$ and $Mg^{2+}$ ratio. In all plots cultivated with the shot-term rotational crops, the ratios of bacteria to fungi (B/F) increased. However, the improvement in soil properties after adding a rotational crop did not result in a clear improvement in watermelon quantity or quality as measured by fruit weight and sugar content. Therefore, the addition of short-term rotational crops to a continuous watermelon cropping system would be beneficial to improve target soil properties in plastic film house plots studied.

Effect of Blue Color-deficient Sunlight on the Productivity and Cold Tolerance of Crop Plants (청색파장(靑色波長)영역이 결여된 태양광이 작물(作物)의 생산성(生産性) 및 내냉성(耐冷性)의 향상에 미치는 효과 Ⅰ. 광합성(光合成) 및 호흡(呼吸)의 전자전달계 활성(活性)의 변화)

  • Jung, Jin;Kim, Jong-Bum;Min, Bong-Ki
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.141-148
    • /
    • 1986
  • The blue-light effect on the grown as well as on the physiological activity of some major horticultural plants in Korea has been investigated. The light quality used for the work was obtained from sunlight filtered by an orangecolored polyethylene film which removed about 70% of visible light in the spectral region of $350㎚{\sim}500㎚$. The film was developed in this laboratory especially for the work and named BCR film meaning blue color-removing film. The light environment in the plastic house which was built with BCR film provided plants with the blue color-deficient sunlight. Thus, the photobiological effect of blue light could be examined conversely by comparing with the effect of white sunlight in a conventional plastic house built with colorless polyethylene film. In a sense of applicability to horticulture, two remarkable effects of the blue color-deficient sunlight on plant physiology were observed: First, it enhanced to a great extent the growth activity of plants-pepper, cucumber, zucchini, tomato, and leaf lettuce at the vegetative stage as well as at the reproductive stage, as demonstrated by their yield which were in average $40{\sim}50%$ increased compared with the control (under white sunlight). Second, it improved significantly the cold tolerance of plants, as exhibited with their resistance to chilling during treatment in a cold chamber maintained at a temperature which caused chilling injury to the plants of control. The visualized effects were reflected on the physiological activity of cells on organelle level. Chloroplast isolated from the plant leaves grown under BCR film showed considerably stronger photosynthetic activity, as judged by the increased electron transport rate of illuminated chloroplast, than that from leaves grown under white PE film. Mitochondria from leaves grown under BCR film maintained normal respiration activity until temperature decreased to a few degree($^{\circ}C$) lower than the temperature which caused respiratory inhibition to mitochondria obtained from leaves of the control.

  • PDF