Effect of Silicate Fertilizer on Oriental Melon in Plastic Film House

시설재배 참외에 대한 규산 비료 시용 효과

  • Received : 2003.10.10
  • Accepted : 2003.12.02
  • Published : 2003.12.30

Abstract

Although the requirement and optimum soil level of Si for oriental melon are still not well understood, silicate fertilizer is commonly applied to the oriental melon in plastic film houses where soil silicate level is relatively high. In this research the effects of silicate fertilizer on growth, fruit yield and fruit quality of oriental melon, and soil properties were investigated in plastic film house where the soil available silicate was $212mg\;SiO_2\;kg^{-1}$. Silicate fertilizer was applied in the rates of 100, 200, and $300kg\;10a^{-1}$. The application of silicate fertilizer could not increase the early growth of oriental melon, and also the fruit yield and quality were not different among the treatments. Available Si and P contents in soils and also Si and P contents in leaf of oriental melon of the different treatments were not significantly different. In the relationship between total Si in oriental melon leaf and soil silicate extracted by 1 N sodium acetate, optimum soil available silicate level for oriental melon was found to be around $100mg\;SiO_2\;kg^{-1}$. These results indicate that the additional silicate fertilization in soils of available silicate higher than $100mg\;SiO_2\;kg^{-1}$ is unnecessary, and such application of silicate can not have any beneficial effect on the growth and fruit yield of oriental melon.

규산질 비료는 산성 토양의 개량 효과와 함께 병충해 발생 억제 효과를 나타내므로 농약 사용량을 줄일 수 있어 안전농산물의 생산을 유도할 수 있는 자재로 판단되고 있으며 일부 참외의 수량 증대와 상품성을 향상시킬 수 있는 것으로 알려져 있다. 그러나 현재 참외를 비롯한 과채류에 대하여 규산질 비료의 시용효과가 검정되어있지 않고 또한 적정 시용 기준이 설정되어 있지 못한 상태에서 농가별로 토양 유효규산 함량을 고려하지 않고 임의로 규산질 비료를 사용하고 있다. 본 연구에서 조사된 결과를 보면 참외 재배 포장에서 1 N NaOAc로 추출할 경우 최고 $500mg\;SiO_2\;kg^{-1}$ 수준까지 유효규산이 축적되어 있으며, $200mg\;SiO_2\;kg^{-1}$ 수준의 유효규산을 함유하고 있는 토양에 대한 규산질 비료의 시용은 참외의 생육이나 수량 증대에 영향을 미치지 못하는 것으로 나타났다. 또한 1 N NaOAc로 추출한 토양 유효규산 함량이 $100mg\;SiO_2\;kg^{-1}$ 이상인 경우 참외의 규산 흡수가 더 이상 증가하지 않는 것으로 나타났다. 따라서 토양 유효규산 함량을 무시한 과다 규산질 비료의 시용은 pH와 EC의 증가에 따른 부작용을 유발할 가능성도 높으므로 농가지도를 통하여 시용량이 적절히 조절되어야 할 것이며, 참외를 비롯한 밭작물에 대한 적정 토양 유효규산 함량과 시비 기준 확립을 위한 연구가 더욱 필요할 것으로 판단된다.

Keywords

References

  1. Baek, N. I. 1983. The interaction between silicate and phosphate fertilizers applied in the paddy soils. MS Thesis. Seoul National University, Seoul, Korea
  2. Cho, I. C., S. H. Lee, and B. J. Cha. 1998. Effects of soluble silicon and several surfactants on the development of powdery mildew of cucumber. Korean J. Environ. Agric. 17:306-311
  3. Deren, C. W., L. E. Datnoff, G. H. Snyder, and F. G. Martin. 1994. Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic Histols. Crop Sci. 34:733-737 https://doi.org/10.2135/cropsci1994.0011183X003400030024x
  4. Elliot, C. L., and G. H. Snyder. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem. 39:1118-1119 https://doi.org/10.1021/jf00006a024
  5. Hallmark, C. T., L. P. Wilding, and N. E. Smeck. 1982. Silicon, p. 263-273. In Page, A. L. et al. (ed.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. Soil Science Society of America, Madison, Wisconsin, USA
  6. Horst, W. J., and H. Marschner. 1978. Effect of silicon on manganese tolerance of bean plant. Plant Soil 50:287-303 https://doi.org/10.1007/BF02107179
  7. Idris, M., M. M. Hossain, and F. A. Choudhury. 1975. The effect of silicon on lodging of rice in presence of added nitrogen. Plant Soil 43:691-695 https://doi.org/10.1007/BF01928531
  8. Ito, K., and K. Chiba. 1994. Relationship between silicate fertility of soil and irrigation water and the occurrence of rice blast disease. Tohoku Agric. Res. 47:7-8
  9. Lee J. S- and M. S. Yiem. 2000. Effects of soluble silicon on development of powdery mildew (Sphaerotheca fuliginea) in cucumber plants. Korean J. Pestic. Sci. 4:37-43
  10. Lewin, J., and B. E. F. Reimann. 1969. Silicon and plant growth. Annu. Rev. Plant Physiol. 20:289-304 https://doi.org/10.1146/annurev.pp.20.060169.001445
  11. Menzies, J. G., D. L. Ehert, A. D. M. Glass, T. Helmer, C. Koch, and F. Seywerd. 1991. Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on Cucumis sativus. Phytopathol. 81:84-88 https://doi.org/10.1094/Phyto-81-84
  12. Menzies. J., P. Bowen, D. Ehert, and A. D. M. Glass. 1992. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash. J. Am. Soc. Hortic, Sci. 117:902-905
  13. Miyake, Y., and E. Takahashi. 1978. Silicon deficiency of tomato plant. Soil Sci. Plant Nutr. 24:175-189
  14. Miyake, Y., and E. Takahashi. 1983. Effect of silicon on the growth of solution cultured cucumber plant. Soil Sci. Plant Nutr. 29:71-83
  15. Olsen, S. R., and L. E. Sommers. 1982. Phosphorus, p. 403-430. In Page, A. L. et al. (ed.) Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. Soil Science Society of America, Madison, Wisconsin, USA
  16. Parry, D. W., and F. Smithson. 1964. Types of opaline silica deposition in the leaves of British grasses. Ann. Bot. 28:169-185
  17. Saigusa, M., A. Yamamoto, and K. Shibuya. 2000. Agricultural use of porous hydrated calcium silicate. Plant Prod. Sci. 3:51-54 https://doi.org/10.1626/pps.3.51
  18. Sherwood, R. T., and C. P. Vance. 1980. Resistance to fungal penetration in Gramineae. Phytopathol. 70:273-279 https://doi.org/10.1094/Phyto-70-273
  19. Suehisa, R. H., O. R. Young, and D. G. Sherman. 1963. Effects of silicates on phosphorus availability to sudangrass grown on Hawaiian soils. Hawaii Agric. Exp. Stn. Tech. Bull. 51
  20. Thomas, G. W. 1982. Exchangeable cations, p. 159-165. In Page, A. L. et al. (ed.) Methods of Soil Analysis. Part 2:Chemical and Microbiological Properties. Soil Science Society of America, Madison, Wisconsin, USA
  21. Volk, R. J., R. P. Kahn, and R. L. Weintraub. 1958. Silicon content of the rice plant as a factor influencing its resistance to infection by the blast fungus, Piricularia oryzae. Phytopathol. 48:179-184
  22. Vorm, P. D. J. van der. 1980. Uptake of Si by five plant species as influenced by variations in Si-supply. Plant Soil 56:153-156 https://doi.org/10.1007/BF02197962
  23. Woolly, J. T. 1957. Sodium an silicon as nutrients for the tomato plant. Plant Physiol. 32:317-321 https://doi.org/10.1104/pp.32.4.317