• Title/Summary/Keyword: plasma ion density

Search Result 258, Processing Time 0.027 seconds

Charicteristics of HF 10-cm Type Grid Ion Source for Inert and Chemically Reactive Gases.

  • Chol, W.K;Koh, S.K;Jang, H.G;Jung, H.J;Kondranin, S.G.;Kralkina, E.A.;Bougrov, G.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1996.02a
    • /
    • pp.102-102
    • /
    • 1996
  • This paper represents a new type low power High Frequency technological ion source (HF TIS) for ion - beam processing: the surface modification of materials, cleaning of surface, sputtering, coating of thin films, and polishing. The operational principle of HF TIS is based on the excitation of electrostatic waves in plasma located in the external magnetic field. Low power HF TIS with diameter 92 rom gives the opportunity to obtain beams of inert and chemically reactive gases with currents range from 5 to 150 mA (current density $0.015\;~\;3.5\;mA/\textrm{m}^2$) and ion beam energy 100 ~ 2500 eV at a HF power level 10 ~ 150 W. Three grid concave type ion optical system (IOS) is used for extraction and formation ofion beam.n beam.

  • PDF

Dry etching of pt thin film in inductive coupled BCl$_{3}$/Cl$_{2}$ plasmas (유도 결합 BCl$_{3}$/Cl$_{2}$ 플라즈마내에서 Pt 박막의 건식 식각)

  • 김남훈;김창일;권광호;장의구
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.375-378
    • /
    • 1998
  • Platinum thin film which hardly form volatile compounds with any reactive gas at normal process temperature was etched in inductive coupled BCl$_{3}$/Cl$_{2}$ plasma. The etch rate of platinum thin film increased with increasing Cl$_{2}$/(Cl$_{2}$ + BCl$_{3}$) ratio. That reasoned increasing of ion current density.

  • PDF

Global MHD Simulation of the Earth's Magnetosphere Event on October, 1999

  • PARK KYUNG SUN;OGINO TATSUKI
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.317-319
    • /
    • 2001
  • The response of the earth's magnetosphere to the variation of the solar wind parameters and Interplanetary magnetic field (IMF) has been stud}ed by using a high-resolution, three-dimension magnetohydrodynamic (MHD) simulation when the WIND data of velocity Vx, plasma density, dynamic pressure, By and Bz every 1 minute were used as input. Large electrojet and magnetic storm which occurred on October 21 and 22 are reproduced in the simulation (fig. 1). We have studied the energy transfer and tail reconnect ion in association with geomagnetic storms.

  • PDF

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Etching Mechanism Of Bi4-xEuxTiO12 (BET) Thin films Using Ar/CF4 Inductively Coupled Plasma (Ar/CF4 유도결합 플라즈마를 이용한 BET 박막의 식각 메카니즘)

  • 임규태;김경태;김동표;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.298-303
    • /
    • 2003
  • Bi$_4$-$_{x}$EU$_{x}$Ti$_3$O$_{12}$ (BET) thin films were etched by inductively coupled CF$_4$/Ar plasma. We obtained the maximum etch rate of 78 nm/min at the gas mixing ratio of CF$_4$(10%)/Ar(90%). The variation of volume density for F and Ar atoms are measured by the optical emission spectroscopy. As CF$_4$increased in CF$_4$/Ar plasma, the emission intensities of F increase, but Ar atoms decrease, which confirms our suggestion that emission intensity is proportional to the volume density of atoms. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O and the Ti-O peaks are changed. By pure Ar plasma, intensity peak of the oxygen-metal (O-M : TiO$_2$, Bi$_2$O$_3$, Eu$_2$O$_3$) bond was seemed to disappear while the intensity of pure oxygen peak showed an opposite tendency. After the BET thin films was etched by CF$_4$/Ar plasma, the peak intensity of O-M bond increase slowly, but more quickly than that of peak belonged to pure oxygen atoms due to the decrease of Ar ion bombardment. Scanning electron microscopy was used to investigate etching Profile. The Profile of etched BET thin film was over 85$^{\circ}$./TEX>.

Etch Mechanism of $Y_2O_3$ Thin Films in High Density Plasma (고밀도 플라즈마에 의한 $Y_2O_3$ 박막의 식각 메커니즘 연구)

  • 김영찬;김창일;장의구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.25.1-28
    • /
    • 2000
  • In this study, $Y_2O_3$ thin films were etched with inductively coupled plasma (ICP). The etch rate of $Y_2O_3$ , and the selectivity of $Y_2O_3$ to YMnO$_3$were investigated by varying $Cl_2$/($Cl_2$+Ar) gas mixing ratio. The maximum etch rate of $Y_2O_3$ , and the selectivity of $Y_2O_3$ to YMnO$_3$ were 302/min, and 2.4 at $Cl_2$/($Cl_2$+Ar) gas mixing ratio of 0.2 repetitively. In x-ray photoelectron spectroscopy (XPS) analysis, $Y_2O_3$ thin film was dominantly etched by Ar ion bombardment, and was assisted by chemical reaction of Cl radical. These results were confirmed by secondary ion mass spectroscopy(SIMS) analysis. YCl, and $YC_3$ existed at 126.03 a.m.u, and 192.3 a.m.u, respectively.

  • PDF

A Study on the Etching Characteristics of $YMnO_3$ Thin Films in High Density $Cl_2/Ar$ Plasma (고밀도 $Cl_2/Ar$ 플라즈마를 이용한 $YMnO_3$ 박막의 식각 특성에 관한 연구)

  • 민병준;김창일;장의구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • Ferroelectric YMnO$_3$thin films are excellent dielectric materials for high integrated ferroelectric random access memory (FRAM) with metal-ferroelectric-silicon field effect transistor (MFSFET) structure. In this study, YMnO$_3$thin films were etched with Cl$_2$/Ar gas chemistries in inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$thin films is 285 $\AA$/min under Cl$_2$/Ar of 10/0, 600 W/-200 V and 15 mTorr. The selectivities of YMnO$_3$over CeO$_2$and $Y_2$O$_3$are 2.85, 1.72, respectively. The results of x-ray photoelectron spectroscopy (XPS) reflect that Y is removed dominantly by chemical reaction between Y and Cl, while Mn is removed more effective by Ar ion bombardment than chemical reaction. The results of secondary ion mass spectrometer (SIMS) were equal to these of XPS. The etch profile of the etched YMnO$_3$film is approximately 65$^{\circ}$and free of residues at the sidewall.

  • PDF

Reactive ion etching of InP using $BCl_3/O_2/Ar$ inductively coupled plasma ($BCl_3/O_2/Ar$ 유도결합 플라즈마를 이용한 InP의 건식 식각에 관한 연구)

  • 이병택;박철희;김성대;김호성
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.541-547
    • /
    • 1999
  • Reactive ion etching process for InP using BCl3/O2/Ar high density inductively coupled plasma was investigated. The experimental design method proposed by the Taguchi was utilized to cover the whole parameter range while maintaining reasonable number of actual experiments. Results showed that the ICP power and the chamber pressure were the two dominant parameters affectsing etch results. It was also observed that the etch rate decreased and the surface roughness improved as the ICP power and the bias voltage increased and as the chamber pressure decreased. The Addition of oxygen to the gas mixture drastically improved surface roughness by suppressing the formation of the surface reaction product. The optimum condition was ICP power 600W, bias voltage -100V, 10% $O_2$, 6mTorr, and $180^{\circ}C$, resulting in about 0.15$\mu\textrm{m}$ etch rate with smooth surfaces and vertical mesa sidewalls Also, the maximum etch rate of abut 4.5 $\mu\textrm{m}$/min was obtained at the condition of ICP power 800W, bias voltage -150V, 15% $O_2$, 8mTorr and $160^{\circ}C$.

  • PDF

Synthesis and Lubricant Properties of Nitrogen doped Amorphous Carbon (a-C:N) Thin Films by Closed-field unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링법에 의한 비정질 질화탄소 박막의 합성 및 윤활 특성)

  • Park, Yong-Seob;Cho, Hyung-Jun;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.701-705
    • /
    • 2007
  • The incorporation of N in a-C film is able to improve the friction coefficient and the adhesion to various substrates. In this study, a-C:N films were deposited on Si and steel substrates by closed-field unbalanced magnetron (CFUBM) sputtering system in $Ar/N_2$ plasma. The lubricant characteristics was investigated for a-C:N deposited with total working pressure from 4 to 7 mTorr. We obtained high hardness up to 24GPa, friction coefficient lower than 0.1 and the smooth surface of having the extremely low roughness (0.16 nm). The physcial properties of a-C:N thin film are related to the increase of cross-linked $sp^2$ bonding clusters in the film. However, the decrease of hardness, elastic modulus and the increase of surface roughness, friction coefficient with the increase of $N_2$ partial pressrue might be due to the effect of energetic ions as a result of the increase of ion bombardment with the increase of ion density in the plasma.

Pulsed Magnet ron Sputtering Deposit ion of DLC Films Part II : High-voltage Bias-assisted Deposition

  • Chun, Hui-Gon;Lee, Jing-Hyuk;You, Yong-Zoo;Ko, Yong-Duek;Cho, Tong-Yul;Nikolay S. Sochugov
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.148-154
    • /
    • 2003
  • Short ($\tau$=40 $mutextrm{s}$) and high-voltage ($U_{sub}$=2~8 kV) negative substrate bias pulses were used to assist pulsed magnetron sputtering DLC films deposition. Space- and time-resolved probe measurements of the plasma characteristics have been performed. It was shown that in case of high-voltage substrate bias spatial non-uniformity of the magnetron discharge plasma density greatly affected DLC deposition process. By Raman spectroscopy it was found that maximum percentage of s $p^3$-bonded carbon atoms (40 ~ 50%) in the coating was attained at energy $E_{c}$ ~700 eV per deposited carbon atom. Despite rather low diamond-like phase content these coatings are characterized by good adhesion due to ion mixing promoted by high acceleration voltage. Short duration of the bias pulses is also important to prevent electric breakdowns of insulating DLC film during its growth.wth.