• Title/Summary/Keyword: plasma flow

Search Result 1,179, Processing Time 0.028 seconds

Hydrodynamic approach to cosmic ray acceleration

  • KO CHUNG-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.289-291
    • /
    • 2001
  • To study the structure and dynamics of a cosmic-ray-plasma system, hydrodynamic approach is a fairly good approximation. In this approach, there are three basic energy transfer mechanisms: work done by the plasma flow against pressure gradients, cosmic ray streaming instability and stochastic acceleration. The interplay between these mechanisms gives a range of structures. We present some results of different version of the hydrodynamic approach, e.g., flow structure, injection, instability, acceleration with and without shocks.

  • PDF

Removal of Rhodamine B Dye Using a Water Plasma Process (수중 플라즈마 공정을 이용한 Rhodamine B 염료의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.3
    • /
    • pp.218-225
    • /
    • 2011
  • Objectives: In this paper, a dielectric barrier discharge (DBD) plasma reactor was investigated for degrading the dye Rhodamine B (RhB) in aqueous solutions. Methods: The DBD plasma reactor system in this study consisted of a plasma component [titanium discharge (inner), ground (outer) electrode and quartz dielectric tube], power source, and gas supply. The effects of various parameters such as first voltage (input power), gas flow rate, second voltage (output power), conductivity and pH were investigated. Results: Experimental results showed that a 99% aqueous solution of 20 mg/l Rhodamine B is decolorized following an eleven minute plasma treatment. When comparing the performance of electrolysis and plasma treatment, the RhB degradation of the plasma process was higher that of the electrolysis. The optimum first voltage and air flow rate were 160 V (voltage of trans is 15 kV) and 3 l/min, respectively. With increased second voltage (4 kV to 15 kV), RhB degradation was increased. The higher the pH and the lower conductivity, the more Rhodamine B degradation was observed. Conclusions: OH radical generation of dielectric plasma process was identified by degradation of N, N-dimethyl-4-nitrosoaniline (RNO, indicator of OH radical generation). It was observed that the effect of UV light, which was generated as streamer discharge, on Rhodamine B degradation was not high. Rhodamine B removal was influenced by real second voltage regardless of initial first and second voltage. The effects of pH and conductivity were not high on the Rhodamine B degradation.

The Surface Energy Change of TAC Film Treated by an Atmospheric Pressure Plasma (대기압 플라즈마 처리에 의한 TAC 필름의 표면에너지 변화)

  • Lee, Chang-Ho;Jung, Do-Young;Park, Young-Jik;Song, Hyun-Jig;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.184-190
    • /
    • 2009
  • Tri-acetyl-cellulose(TAC) film surface was modified by atmospheric-pressure plasma technique to obtain the hydrophilic functional groups and improve the contact angle. TAC film was modified with N2 plasma ionized in dielectric barrier discharge(DBD) reactor under atmospheric pressure. We measured the change of the contact angle and the surface energy with respect to the plasma treatment conditions such as plasma treatment power, discharge gap and N2 gas flow rate. As the plasma treatment speed of 100[mm/sec], the plasma treatment power of 1.5[kW], discharge gap 2[mm] and the $N_2$ gas flow rate 140[LPM], the best contact angle and the highest surface energy were obtained. The degree of hydrophilization depended strongly on the plasma-treating time and discharge power.

Effects of Head-down Tilt $(-6^{\circ})$ on Peripheral Blood Flow in Dogs (두부하위$(-6^{\circ})$로의 체위변동이 말초혈류에 미치는 영향)

  • Chae, E-Up;Yang, Seon-Young;Bae, Jae-Hoon;Song, Dae-Kyu
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.51-65
    • /
    • 1990
  • The purpose of the present study was to examine the hemodynamic responses, especially in arterial and skin blood flows, in conjunction with the changes of plasma catecholamine levels as an indirect marker of adrenergic tone during the early stage of head-down tilt (HDT), and to evaluate the early physiological regulatory mechanism in simulated weightlessness. Ten mongrel dogs, weighing8\;{\sim}\;14\;kg, were intravenously anesthetized with nembutal, and postural changes were performed by using the tilting table. The postural changes were performed in the following order: supine, prone, HDT $(-6^{\circ}C)$ and lastly recovery prone position. The duration of each position was 30 minutes. The measurements were made before, during and after each postural change. The arterial blood flow $({\.{Q}})$ at the left common carotid and right brachial arteries was measured by the electromagnetic flowmeter. Blood pressure (BP) was directly measured by pressure transducer in the left brachial artery. To evaluate the peripheral blood flow, skin blood flow $({\.{Q}})$ was calculated by the percent changes of photoelectric pulse amplitude on the forepaw, and skin temperature was recorded. The peripheral vascular resistance (PR) was calculated by dividing respective mean BP values by ${\.{Q}}$ of both sides of common carotid and brachial arteries. Heart rate (HR), respiratory rate (f) and PH, $Po_{2},\;Pco_{2}$ and hematocrit of arterial and venous blood were also measured. The concentration of plasma epinephrine and norepinephrine was measured by radioenzymatic method. The results are summarized as follows: Tilting to head-down position from prone position, HR was initially increased (p<0.05) and BP was not significantly changed. While ${\.{Q}}$ of the common carotid artery was decreased (p<0.05) and PR through the head was increased, ${\.{Q}}$ of the brachial artery was increased (p<0.05) and PR through forelimbs was decreased. ${\.{Q}}$ of the forepaw was initially increased (p<0.05) and then slightly decreased, on the whole revealing an increasing trend. Plasma norepinephrine was slightly decreased and the epinephrine was slightly increased. f was increased and arterial pH was increased (p<0.05). In conclusion, the central blood pooling during HDT shows an increased HR via Bainbridge reflex and an increased ${\.{Q}}$ of the forepaw and brachial ${\.{Q}}$, due to decreased PR which may be originated from the depressor reflex of cardiopulmonary baroreceptors. It is suggested that the blood flow to the brain was adequately regulated throughout HDT $(-6^{\circ}C)$ in spite of central blood pooling. And it is apparent that the changes of plasma norepinephrine level are inversely proportional to those of ${\.{Q}}$ of the forepaw, and the changes of epinephrine level are paralleled with those of the brachial ${\.{Q}}$.

  • PDF

Loss of coolant accident analysis under restriction of reverse flow

  • Radaideh, Majdi I.;Kozlowski, Tomasz;Farawila, Yousef M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1532-1539
    • /
    • 2019
  • This paper analyzes a new method for reducing boiling water reactor fuel temperature during a Loss of Coolant Accident (LOCA). The method uses a device called Reverse Flow Restriction Device (RFRD) at the inlet of fuel bundles in the core to prevent coolant loss from the bundle inlet due to the reverse flow after a large break in the recirculation loop. The device allows for flow in the forward direction which occurs during normal operation, while after the break, the RFRD device changes its status to prevent reverse flow. In this paper, a detailed simulation of LOCA has been carried out using the U.S. NRC's TRACE code to investigate the effect of RFRD on the flow rate as well as peak clad temperature of BWR fuel bundles during three different LOCA scenarios: small break LOCA (25% LOCA), large break LOCA (100% LOCA), and double-ended guillotine break (200% LOCA). The results demonstrated that the device could substantially block flow reversal in fuel bundles during LOCA, allowing for coolant to remain in the core during the coolant blowdown phase. The device can retain additional cooling water after activating the emergency systems, which maintains the peak clad temperature at lower levels. Moreover, the RFRD achieved the reflood phase (when the saturation temperature of the clad is restored) earlier than without the RFRD.

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF

Decomposition Characteristics of Perfluorocompounds(PFCs) Gas through Gliding Arc Plasma with Hydrogen Gas (수소 가스를 첨가한 글라이딩 아크 플라즈마의 과불화화합물(PFCs) 가스 분해 특성)

  • Song, Chang-Ho;Park, Dong-Wha;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • Perfluorocompounds (PFCs) gases were decomposed by gliding arc plasma generated by AC pulse power. $N_2$ gas of 10 LPM flow rate and $H_2$ gas of 0.5 LPM were introduced into the gliding arc plasma generated between a pair of electrodes with SUS 303 material, and the PFCs gases were injected in the plasma and thereby were decomposed. The PFCs gas-decomposition-characteristics through the gliding arc plasma were analyzed by FT-IR, where pure $N_2$ and $H_2$-added $N_2$ environment were used to generate the gliding arc plasma. The PFCs gas-decomposition-properties were changed by electric power for gliding arc plasma generation and the H2 gas addition was effective to enhance the PFCs decomposition rate.

A study for the distribution of plasma density in RF glow discharge (RF 글로우 방전에서의 플라즈마 밀도의 분포에 대한 연구)

  • Keem, Ki-Hyun;Hwang, Joo-Won;Min, Byeong-Don;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.59-61
    • /
    • 2002
  • In this study we attempted to diagnose the distribution of nitrogen plasma density generated using PECVD(plasma enhanced chemical vapor deposition). The distribution of plasma density formed in a PECVD chamber were measured by DLP2000. The experiment results showed that the plasma density is related to RF power and gas flow rate. As RF power gets higher, the plasma density linearly increased. And the experimental results revealed that a pressure in chamber affects plasma density.

  • PDF

Inactivation of Zooplankton Artemia sp. Using Plasma Process (플라즈마 공정을 이용한 동물성 플랑크톤 Artemia sp. 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • This study aims to inactivate Artemia sp. (Zooplankton) in ballast water through the dielectric barrier discharge (DBD) plasma process. The DBD plasma process has the advantage of enabling direct electric discharge in water and utilizing chemically active species generated by the plasma reaction. The experimental conditions for plasma reaction are as follows; high voltage of 9-22 kV, plasma reaction time of 15-600 s, and air flow rate of 0.5-5.5 L/min. The results showed that the optimal experimental conditions for Artemia sp inactivation were 16 kV, 60 s, 2.5 L/min, respectively. The concentrations of total residual oxidants and ozone generated by plasma reaction increased with an increase of in voltage and reaction time, and the concentration of generated air did not increase above a certain amount.