• Title/Summary/Keyword: plantlets production

Search Result 107, Processing Time 0.025 seconds

Influence of Growth Environment of Anther - Donor Plant and Chilling treatments to Flower Bud on Haploid Plantlets Production in Anther culture of Nicotiana tabacum L. (연초 약배양시 Anther-donor 식물체의 생육조건 및 약의 저온처리가 반수체 출현빈도에 미치는 영향)

  • 금완수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.64-68
    • /
    • 1994
  • The present experiments were conducted to investigate some of the factors affecting the number of haploids derived from anther culture of Nicotiana tabacum. Anther - donor plants grown under controlled environment room at 3$0^{\circ}C$ yielded more haploid than room at 18, 25 and 26-22-18$^{\circ}C$ in anther culture. Donor plants starved of fertilizer yielded more haploids as compared to those of the well fed with fertilizer in anther culture. Pretreatment of exercised flower bud at 5$^{\circ}C$ was shown to be more effective in anther culture than pretreatment at 7 and 1$0^{\circ}C$, and the optimum temperature and period of pretreatment were 4 or 6 days at 5$^{\circ}C$.

  • PDF

Adventitious Shoots Regeneration from Seed Explants of Xanthoceras sorbifolium

  • Hyunseok Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.58-58
    • /
    • 2020
  • Xanthoceras sorbifolium Bunge (yellowhorn) is a woody tree in the soapberry family, Sapindaceae, native to northern China. This species has been identified as a major woody bioenergy plant for bio-diesel production because of high oil content in seed. But the flowers do not bear fruit well while the many flowers blooming. This study was performed to regenerate in vitro plantlet using adventitious shoot formation. To establish the protocol of plant regeneration, adventitious shoots formation rate in the culture of cotyledon of immature zygotic embryos was 68.6% in 1/2 MS medium with 0.5 mg l-1 BA and 3% sucrose (w/v). In the culture of cotyledons of mature zygotic embryos, induction of adventitious shoots was needed to contain high sucrose in pre-culture medium and the frequency of shoot induction was 64.4%. Multiple shoots were induced in 0.5 mg l-1 TDZ, and rooting of shoot was induced 4.0 mg l-1 IBA. Flow cytometry analysis revealed that all the regenerated plantlets were diploid.

  • PDF

Production of Virus Free Seeds using Meristem Culture in Tomato Plant under Tropical Conditions

  • Alam M.F.;Banu M.L.A.;Swaraz A.M.;Parvez S.;Hossain M.;Khalekuzzaman M.;Ahsan N.
    • Journal of Plant Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.221-227
    • /
    • 2004
  • Protocol was established for production of virus free healthy seeds using meristem ($0.3-0.5\;\cal{mm}$ in size) culture and field management under net house condition in tomato. The isolated meristem was found well established in MS liquid medium containing $0.1\;\cal{mg}\;1^{-1}\;of\;GA_3$. For shoot and root development either from primary meristem or from nodal segment of meristem derived plants, semisolid MS medium having $0.5\;\cal{mg}\;1^{-1}$ of IBA was found most effective. The elimination of the studied viruses (ToMV, CMV, ToLCV) in meristem-derived plants was confirmed by DAS-ELISA test. For field management of the virus eradicated meristem-derived plants, use of net house was found very effective measures to check viral vector visit and eventually infection. The meristem-derived plants were vigor and high yielder than the native seed derived plants and produced healthy seeds. Due to stop vector visit, no viral symptoms were observed in both $R_1\;and\;R_2$ plants cultivated in net house condition. Starting of viral infestation was observed in $R_2$ generation when they were planted in open house condition without control of vector visit. Therefore, for management of viral diseases, use of virus free meristem derived plantlets and their subsequent cultivation in soil under net house condition without using any vector killing insecticide can be recommended for producing healthy seeds in tomato. The developed protocol for environmentally healthy tomato seed production in Bangladesh may be used in the countries having similar tropical like environment conducive for viral vector visit.

Effect of Medium Composition on in vitro Plant Root Regeneration from Axillary Buds of Cassava (Manihot esculenta Crantz) (카사바 액아배양 시 배지조성이 기내 식물체 발근에 미치는 영향)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim;Yong Sup Song
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.24-24
    • /
    • 2021
  • The Cassava (Manihot esculenta Crantz) is one of the major food crops in the tropical or subtropical regions. Recently, clean planting materials of improved cassava cultivars are in high demand. Problems in the propagation of cassava are virus vulnerable and low rates of seed germination. Thus, the study was undertaken to develop an efficient in vitro mass propagation protocol of Manihot esculenta Crantz. So we tried to optimize protocols for mass production from axillary buds of Cassava. Young and actively growing stem segments were excised from adult plants of cassava. Samples were cut into a 3~4 cm nodal segments with axillary buds, and cultivated in the different medium supplemented with various plant growth regulators for 4 weeks. For shoot multiplication, axillary buds approximately 1 cm in length were taken from in vitro derived shoots and subcultured. After 4~6 weeks, the shoot generation rate showed 55.6%. The shoot number and its length was 1.0/explant and 2.3 cm in the most favorable medium composition. The auxin β-indolebutyric acid(IBA) 0~2.0 mg/L was proved to be effective on root development. Plantlets with fibrous roots easily generated tuberous roots in vitro. The tuberous roots were induced only when both kinetin and IBA were used in combination. after 8 weeks, the root generation rate showed 100%. The root number and its length was 17.2/explant and 2.2 cm in the most promising medium composition. Our experiments confirmed that in vitro growth and multiplication of plantlets could depend on its reaction to the different medium composition, and this micropropagation techniques could be a useful system for healthy and vigorous plant production.

  • PDF

Breeding of the native vegetables using the biotechnology

  • Iwamoto, Yuzuri
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.106-111
    • /
    • 2005
  • For breeding of a new rootstock for eggplant production, somatic hybrids between two species, Solanum integrifolium and S. sanitwongsei were obtained through protoplast fusion. The former species has been commonly used for rootstock for eggplant production in Japan. Eggplants on these rootstocks are more productive than ungrafted plants, but are susceptible to bacterial wilt caused Ralstonia solanacearum. While the latter species is resistant, the growth of eggplants on this rootstock is rather slow and low yield. Protoplast of both species were isolated from cotyledons, and inactivated with iodoacetamide or UV-irradiation, then fused electrically. The fused products were then cultured. Regenerated plantlets were then transplanted on soil then maintained in a green house. The plants were classified into four groups. Those in the first group showed morphological characters intermediate of the parentalspecies. The plants bore fruit with viable seeds. The plants showed a chromosome number of 2n=48, the sum of those of the parental species, and are suggested to be symmetric fusion products. While plants in the other groupswas less vigorous and showed chromosome number 2n= 68 to 72 suggesting asymmetric fusion products by genomic in situ hybridization(GISH). Isozyme pattern of shikimate dehydrogenase (SKDH; EC 1.1.1.25), isocitrate dehydrogenase (IDH; EC 1.1.1.41) and phosphoglucomutase (PGM; EC 2.7.5.1) showed that 24 regenerated plants in three groups were somatic hybrids. Analysis of random amplified polymorphic DNA (RAPD) showed that 43 S. integrifolium-specific and 57 S. sanitwongsei-specific bands were all found in 24 plants. Both somatic hybrids and its S1 plants were found to be resistant to bacterial wilt, and eggplant grafted these plants using for rootstocks were more productive than grafted mother plants. Now, S1 progenies are used for commercial eggplant production in Osaka Prefecture.

  • PDF

Production of Haploids from Proton Ion and Gamma-Ray Irradiation Treated $M_2$ Generation of Isolated Microspores in Brassica napus L. ssp. oleifera (앙성자 및 감마선을 처리한 유채 $M_2$ 세대의 소포자로부터 반수체 배발생)

  • Kim, Kwang-Soo;Li, Mei-Yang;Jang, Young-Seok;Park, Yoon-Jung;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.150-155
    • /
    • 2008
  • This experiment was carried out to investigate the effect of proton ion and gamma-ray irradiation on microspore culture of the flower buds of $M_2$ generation in winter type of Brassica napus L. ssp. oleifera. The seeds of three rape varieties, 'Halla', 'Naehan' and 'Tammi' were pretreated with proton ion and gamma-ray 400 Gy and 600 Gy, respectively. When microspore culture techniques were used, embryogenesis was increased in some varieties by proton ion and gamma-ray irradiation treated flower buds of $M_2$ generation than control. In genotypes 'Naehan' showed the highest embryo production frequency, but 'Tammi' showed lowest embryo production frequency. Some of the embryoids developed directly into plantlets, whereas others developed abnormally multilobe. Plants were regenerated and successfully acclimatized in pots.

Plant Regeneration of B.juncea Through Plant Tissue and Protoplast Culture

  • Lian, Yu-Ji;Lim, Hak-Tae
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2001
  • New types of cytoplasmic male sterility in Brassica species would be very useful for the production of F$_1$, hybrid seeds. Leaves and stems of rapid cycling stock of B.juncea (CrGC4-3) containing Anand CMS were used as experimental materials for plant regeneration from protoplast culture. Very high plant regeneration rate (85%) was found in the Kao & Michayluk medium supplemented with 2 mg/L zeatin, 0.5 mg/L BAP, and 1 mg/L NAA when only leaf, not stem, segments were cultured. Protoplasts were isolated from leaves using mixtures of enzymes (1% Cellulycin, 0.5% Macerozyme) in 0.4 M mannitol and 50 mM $CaCl_2$.$2H_2$O. Mcrocalli induced from protoplasts were transferred to the shoot regeneration medium containing 2 mg/L BAP, 2 mg/L zeatin, and 0.5 mg/L NAA. After 60 days of initial protoplast culture, regenerated plantlets were obtained, acclimatized, transplanted into the pots, and grown up to the flowering stage.

  • PDF

In vitro regeneration from cotyledon explants in figleaf gourd (Cucurbita ficifolia Bouch$\'{e}$), a rootstock for Cucurbitaceae

  • Kim, Kyung-Min;Kim, Chang-Kil;Han, Jeung-Sul
    • Plant Biotechnology Reports
    • /
    • v.4 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • An efficient plant regeneration system has been developed for figleaf gourd (Cucurbita ficifolia Bouch$\'{e}$), which is exclusively used as a rootstock for cucumber. The protocol is based on results obtained from a series of culture experiments involving different parts of the cotyledons and various media. The culture of cotyledon explants was critical for the enhancement of shoot regeneration frequency. The lower parts of the cotyledon excised at the plumule base were found to display a markedly enhanced production of adventitious shoots compared to other cotyledon regions. Culture in silver nitrate-supplemented Murashige and Skoog (MS) medium was not beneficial for shoot regeneration and suppressed root regeneration. Efficient shoot regeneration was obtained on MS medium containing 1.0 $mg\;l^{-1}$ zeatin and 0.1 $mg\;l^{-1}$ indole-3-acetic acid. Regenerated shoots successfully elongated and rooted in medium containing 0.1 $mg\;l^{-1}$ 1-naphthalene-acetic acid after 10-15 days of subculturing. The plantlets were satisfactorily acclimatized in a greenhouse and grew into normal plants without any morphological alterations.

The apical bud as a novel explant for high-frequency in vitro plantlet regeneration of Perilla frutescens L. Britton

  • Hossain, H.M.M. Tariq;Kim, Yong-Ho;Lee, Young-Sang
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • In this study, we established an in vitro regeneration system to maximize the recovery of leafy perilla (Perilla frutescens L. Britton) plantlets as part of developing a molecular biotechnology-based metabolic engineering program for this crop plant. Hypocotyl segments including the apical buds were used as explants for the direct production of shoots without an interim callus phase. The number of shoots produced from the apical buds peaked within 3-4 weeks, and the shoots were subsequently cultured on Murashige and Skoog (MS) media supplemented with 2 mg $1^{-1}$ benzylaminopurine (BA). Spontaneous rhizogenesis was observed after 7-10 days of culture on MS media without hormonal additives. The rooted shoots developed into normal plants in soil after hardening on distilled water for 3-4 days. The average plantlet regeneration frequency was higher for the apical buds (64.33%) than for the top (15.66%), middle (4%), and basal (1.33%) segments of the hypocotyls. This regeneration system demonstrates a capacity for high-frequency plantlet recovery and thus should be considered for use in the genetic manipulation of leafy perilla.

High-frequency Plant Regeneration from Cultured Flower Bud Receptacles of Allium hookeri L.

  • Koo, Ja Choon
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.694-701
    • /
    • 2014
  • Allium hookeri L. (Alliaceae family) is an important ethnomedicinal plant native to the Himalayan region of Asia. The aim of this research was to establish a high-frequency plant regeneration system for in vitro propagation of A. hookeri. Among the tissue types examined, receptacle explants derived from immature flower buds showed the highest regeneration rate of shoots ($93.33{\pm}4.63%$), roots ($76.67{\pm}7.85%$), and calli ($80.00{\pm}7.43%$) when cultured on Gamborg B5 (B5) medium containing $10{\mu}M$ 6-benzylaminopurine (BA) + $1{\mu}M$ naphthalene acetic acid (NAA), $0.5{\mu}M$ BA + $5{\mu}M$ NAA, and $1{\mu}M$ BA + $10{\mu}M$ NAA, respectively. Shoot multiplication was superior when cultured in liquid rather than on solid medium and relatively high concentrations of BA, ranging from 5 to $10{\mu}M$. Efficient bulblet formation following root induction from shoot clumps was achieved with culture in liquid B5 medium containing 7% (w/v) sucrose. Regenerated bulblets were successfully acclimatized to ex vitro conditions with a greater than 95% survival rate. By this method, a maximum of 62 plantlets per receptacle could be propagated within 9 weeks of initial culture. The in vitro propagation system established in this study will promote A. hookeri biotechnology, including large-scale production of healthy and aseptic clones, preserving parental genotypes with desirable traits, and genetic manipulation to enhance medicinal value.