• 제목/요약/키워드: plant growth-promoting fungus

검색결과 21건 처리시간 0.026초

Role of Siderophores in Biocontrol of Fusarium solani and Enhanced Growth Response of Bean by Pseudomonas fluorescens GL20

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.13-20
    • /
    • 1997
  • Plant growth-promoting Psudomonas fluorescens GL20 was isolated from a ginseng rhizosphere on chrome azurol Sagar. P. fluorescens GL20 produced a large amount of hydoxamate siderophore in an iron-deficient medium. The siderophore showed significantly high specific activity of 20.2 unit. Using an in vitro antifungal test, P. fluorescens GL20 considerably suppressed growth of phytopathogenic fungus Fusarium solani, inhibiting spore germination and germ tube elongation. In pot trials of kidney beans with P. fluorescens GL20, disease incidence was remarkably reduced up to $68{\%}$ compared with that of F. solani alone, and plant growth was also increased nearly 1.6 fold as compared to that of the untreated control, promoting elongation and development of the roots. These results indicate that the plant growth-promoting activity of P. fluorescens GL20 can play an important role in biological control of soil-borne plant disease in a rhizosphere, enhancing the growth of plants.

  • PDF

The Plant Growth-Promoting Fungus Aspergillus ustus Promotes Growth and Induces Resistance Against Different Lifestyle Pathogens in Arabidopsis thaliana

  • Salas-Marina, Miguel Angel;Silva-Flores, Miguel Angel;Cervantes-Badillo, Mayte Guadalupe;Rosales-Saavedra, Maria Teresa;Islas-Osuna, Maria Auxiliadora;Casas-Flores, Sergio
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권7호
    • /
    • pp.686-696
    • /
    • 2011
  • To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.

A Plant Growth-Promoting Pseudomonas fluorescens GL20: Mechanism for Disease Suppression, Outer Membrane Receptors for Ferric Siderophore, and Genetic Improvement for Increased Biocontrol Efficacy

  • LIM, HO SEONG;JUNG MOK LEE;SANG DAL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.249-257
    • /
    • 2002
  • Pseudomonas fluorescens GL20 is a plant growth-promoting rhizobacterium that produces a large amount of hydroxamate siderophore under iron-limited conditions. The strain GL20 considerably inhibited the spore germination and hyphal growth of a plant pathogenic fungus, Fusarium solani, when iron was limited, significantly suppressed the root-rot disease on beans caused by F. solani, and enhanced the plant growth. The mechanism for the beneficial effect of strain GL20 on the disease suppression was due to the siderophore production, evidenced by mutant strains derived from the strain. Analysis of the outer membrane protein profile revealed that the growth of strain GL20 induced the synthesis of specific iron-regulated outer membrane proteins with molecular masses of 85- and 90 kDa as the high-affinity receptors for the ferric siderophore. In addition, a cross-feeding assay revealed the presence of multiple inducible receptors for heterologous siderophores in the strain. In order to induce increased efficacy and potential in biological control of plant disease, a siderophore-overproducing mutant, GL20-S207, was prepared by NTG mutagenesis. The mutant GL20-S207 produced nearly 2.3 times more siderophore than the parent strain. In pot trials of beans with F. solani, the mutant increased plant growth up to 1.5 times compared with that of the parent strain. These results suggest that the plant growth-promoting P. fluorescens GL20 and the genetically bred P. fluorescens GL20-S207 can play an important role in the biological control of soil-borne plant diseases in the rhizosphere.

Endophytic Fungi of Salt-Tolerant Plants: Diversity and Ability to Promote Plant Growth

  • Khalmuratova, Irina;Choi, Doo-Ho;Kim, Jong-Guk;Lee, In–Seon
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1526-1532
    • /
    • 2021
  • Suaeda australis, Phragmites australis, Suaeda maritima, Suaeda glauca Bunge, and Limonium tetragonum in the Seocheon salt marsh on the west coast of the Korean Penincula were sampled in order to identify the endophytes inhabiting the roots. A total of 128 endophytic fungal isolates belonging to 31 different genera were identified using the fungal internal transcribed spacer (ITS) regions and the 5.8S ribosomal RNA gene. Fusarium, Paraconiothyrium and Alternaria were the most commonly isolated genera in the plant root samples. Various diversity indicators were used to assess the diversity of the isolated fungi. Pure cultures containing each of the 128 endophytic fungi, respectively, were tested for the plant growth-promoting abilities of the fungus on Waito-C rice germinals. The culture filtrate of the isolate Lt-1-3-3 significantly increased the growth of shoots compared to the shoots treated with the control. Lt-1-3-3 culture filtrate was analyzed and showed the presence of gibberellins (GA1 2.487 ng/ml, GA3 2.592 ng/ml, GA9 3.998, and GA24 6.191 ng/ml). The culture filtrate from the Lt-1-3-3 fungal isolate produced greater amounts of GA9 and GA24 than the wild-type Gibberella fujikuroi, a fungus known to produce large amounts of gibberellins. By the molecular analysis, fungal isolate Lt-1-3-3 was identified as Gibberella intermedia, with 100% similarity.

Penicillium menonorum: A Novel Fungus to Promote Growth and Nutrient Management in Cucumber Plants

  • Babu, Anam Giridhar;Kim, Sang Woo;Yadav, Dil Raj;Hyum, Umyong;Adhikari, Mahesh;Lee, Youn Su
    • Mycobiology
    • /
    • 제43권1호
    • /
    • pp.49-56
    • /
    • 2015
  • The present study is the first report on the isolation of Penicillium menonorum from rhizosphere soil in Korea and its identification based on morphological characteristics and internal transcribed spacer gene sequence. The fungal isolate was named KNU-3 and was found to exhibit plant growth-promoting (PGP) activity through indole acetic acid (IAA) and siderophore production, as well as P solubilization. KNU-3 produced 9.7 mg/L IAA and solubilized 408 mg of $Ca_3PO_4/L$, and inoculation with the isolate significantly (p < 0.05) increased the dry biomass of cucumber roots (57%) and shoots (52%). Chlorophyll, starch, protein, and P contents were increased by 16%, 45%, 22%, and 14%, respectively, compared to plants grown in uninoculated soil. The fungus also increased soil dehydrogenase (30%) and acid phosphatase (19%) activities. These results demonstrate that the isolate KNU-3 has potential PGP attributes, and therefore it can be considered as a new fungus to enhance soil fertility and promote plant growth. Moreover, the discovery of PGP ability and traits of this fungus will open new aspects of research and investigations. In this study, plant growth promotion by P. menonorum KNU-3 is reported for the first time in Korea after its original description.

사구에 서식하는 단자엽식물로부터 식물 생장 촉진 활성 내생 진균류의 분리 (Isolation of Endophytic Fungi Capable of Plant Growth Promotion from Monocots Inhabited in the Coastal Sand Dunes of Korea)

  • ;;임순옥;이인중;서종철;추연식;진익렬;김상달;이인구;김종국
    • 생명과학회지
    • /
    • 제18권10호
    • /
    • pp.1355-1359
    • /
    • 2008
  • 내생성 진균류는 초본류의 식물체 내에 주로 서식하며, 식물의 병원균으로부터 숙주를 보호할 뿐만 아니라, 식물 생육에 유리하게 작용하는 다양한 대사 산물을 생산한다. 매우 흔히 접할 수 있는 사구식물의 뿌리로부터 49종의 균류를 분리하여 식물 생장 촉진 활성이 있는 균주를 선별하였다. 결과적으로 37균주(75.5%)는 awito-c 벼의 생육을 촉진하였으며, 11균주(22.5%)는 생육을 저해하였으며, 1균주(2%)는 생육에 아무런 영향을 미치지 않았다. Gibberella fujikuroi와 증류수 및 Czapek broth 배지를 control 로 사용하여 실험을 수행하였다. 결론적으로 사구식물 내생균류의 많은 부분은 숙주식물의 생육과 발달을 조장하는 대사 산물을 생산함을 알 수 있었다.

토양에서 식물생육촉진 활성을 가진 균주 Bacillus subtilis YK-5의 분리 및 특성 (Isolation and Characterization of Plant Growth Promoting Rhizobacterium Bacillus subtilis YK-5 from Soil)

  • 여수환;육영민;김현수
    • KSBB Journal
    • /
    • 제24권4호
    • /
    • pp.334-340
    • /
    • 2009
  • 식물성장 촉진 기능을 가지는 PGPR (plant growth-promoting rhizobacteria)균은 특수한 토양시료를 사용하여 내열성을 가지는 400개의 균주를 분리하였다. 이들 분리균주에서 선발한 공시균주 Bacillus sp. YK-5는 항진균성 물질을 생산하였으며, 시험균주 Asp. flavus를 대상으로 생산조건을 검토한 결과, 공시균주의 생육배지는 생육촉진효과와 식물병원균에 대한 방제를 위해 1% peptone 및 yeast extract, 5% black sugar가 함유된 modified LB배지를 사용하였다. 식물병원균에 대한 공시균주의 길항효과는 시험균주인 식물병원균 Fusarium oxysporum KACC 40052균에 대해 배양 7일째까지 강한 생육저해를 보였다. 공시균의 식물성장촉진능은 궁중무 및 벼를 대상으로 pot 실험한 결과, 궁중무의 경우 경엽수, 줄기의 길이 및 뿌리의 길이가 무처리구에 비해 약 60%이상 우수한 성장촉진효과를 나타내었으며, 벼의 경우 이식 후 시비 8일째 시판제품 처리구에 비해 공시균주 처리구는 잎의 길이와 흰 세근의 발달이 우수하여 뿌리의 발육에 현저한 생육촉진 효과를 나타내었다. 공시균주의 동정은 분자계통분류학적 분석 (형태, 배양, 생리, 화학적 및 분자생태학적 측면)에 의해 B. subtilis YK-5로 명명하였다.

Ultrastructures of Colletotrichum orbiculare in the Leaves of Cucumber Plants Expressing Induced Systemic Resistance Mediated by Glomus intraradices BEG110

  • Jeun, Yong-Chull;Lee, Yun-Jung;Kim, Ki-Woo;Kim, Su-Jung;Lee, Sang-Woo
    • Mycobiology
    • /
    • 제36권4호
    • /
    • pp.236-241
    • /
    • 2008
  • The colonization of an arbuscular mycorrhizal fungus Glomus intraradices BEG110 in the soil caused a decrease in disease severity in cucumber plants after fungal inoculation with Colletotrichum orbiculare. In order to illustrate the resistance mechanism mediated by G. intraradices BEG110, infection patterns caused by C. orbiculare in the leaves of cucumber plants and the host cellular responses were characterized. These properties were characterized using transmission electron microscopy on the leaves of cucumber plants grown in soil colonized with G. intraradices BEG110. In the untreated plants, inter- and intra-cellular fungal hyphae were observed throughout the leaf tissues during both the biotrophic and necrotrophic phases of infection. The cytoplasm of fungal hyphae appeared intact during the biotrophic phase, suggesting no defense response against the fungus. However, several typical resistance responses were observed in the plants when treated with G. intraradices BEG110 including the formation of sheaths around the intracellular hyphae or a thickening of host cell walls. These observations suggest that the resistance mediated by G. intraradices BEG110 most often occurs in the symplast of the host cells rather than in the apoplast. In addition, this resistance is similar to those mediated by biotic inducers such as plant growth promoting rhizobacteria.

Antagonistic Activity of Siderophore-Producing Bacteria from Black Rice Rhizosphere against Rice Blast Fungus Pyricularia oryzae

  • Nabila, Nabila;Kasiamdari, Rina Sri
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.217-224
    • /
    • 2021
  • Rice blast caused by Pyricularia oryzae, which is a major threat to food security worldwide, markedly decreases the yield of rice. Some rhizobacteria called 'plant growth-promoting rhizobacteria' inhibit plant pathogens and improve plant growth by secreting iron-chelating siderophores. The decreased availability of iron adversely affects the survival of pathogens, especially fungal pathogens, in the rhizosphere. This study aimed to determine the morphological diversity of siderophore-producing bacteria, analyze the type of siderophores produced by the bacteria, and examine their growth-inhibitory activity against Pyricularia oryzae. The rhizobacteria were isolated from the rhizosphere of Sembada Hitam variety of black rice plants in Pakem, Sleman, Yogyakarta, Indonesia. In total, 12 distinct isolates were screened for the production of siderophores. It was found that 9 out of 12 bacteria produced siderophore and most of them were Gram positive bacteria. The best siderophore-producing isolates with different type of siderophore were used in further studies. The IS3 and IS14 isolates were found to be the best siderophore producer that produced hydroxamate and mixed type of hydroxamate-carboxylate type of siderophore, respectively. In the dual culture assay, IS14 showed a strong antagonistic effect against Pyricularia oryzae by the 81.17% inhibition.

In Vivo Expression Technology (IVET) and Its Application in Plant-Associated Bacteria

  • Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제18권2호
    • /
    • pp.57-62
    • /
    • 2002
  • In vivo expression technology (IVET) has been developed to study bacterial gene expression in Salmonella typhimurium during host infection. The expression of selected genes by IVET has been elevated in vivo but not in vitro. The selected genes turned out to be important for bacterial virulence and/or pathogenicity. IVET depends on a synthetic operon with a promoterless transcriptional fusion between a selection marker gene and a reporter gene. The IVET approach has been successfully adapted in other bacterial pathogens and plant-associated bacteria using different selection markers. Pseudomonas putida suppresses citrus root rot caused by Phytophthora parasitica and enhances citrus seedling growth. The WET strategy was adapted based on a transcriptional fusion, pyrBC'-lacZ, in P. putida to study the bacterial traits important far biocontrol activities. Several genes appeared to be induced on P. parasitica hyphae and were found to be related with metabolism and regulation of gene expression. It is likely that the biocontrol strain took a metabolic advantage from the plant pathogenic fungus and then suppressed citrus root rot effectively. The result was parallel with those from the adaptation of IVET in P. fluorescens, a plant growth promoting rhizobacteria (PGPR). Interestingly, genes encoding components for type III secretion system have been identified as rhizosphere-induced genes in the PGPR strain. The type III secretion system may play a certain role during interaction with its counterpart plants. Application of IVET has been demonstrated in a wide range of bacteria. It is an important strategy to genetically understand complicated bacterial traits in the environment.