DOI QR코드

DOI QR Code

The Plant Growth-Promoting Fungus Aspergillus ustus Promotes Growth and Induces Resistance Against Different Lifestyle Pathogens in Arabidopsis thaliana

  • Received : 2011.01.10
  • Accepted : 2011.04.19
  • Published : 2011.07.28

Abstract

To deal with pathogens, plants have evolved sophisticated mechanisms including constitutive and induced defense mechanisms. Phytohormones play important roles in plant growth and development, as well as in the systemic response induced by beneficial and pathogen microorganisms. In this work, we identified an Aspergillus ustus isolate that promotes growth and induces developmental changes in Solanum tuberosum and Arabidopsis thaliana. A. ustus inoculation on A. thaliana and S. tuberosum roots induced an increase in shoot and root growth, and lateral root and root hair numbers. Assays performed on Arabidopsis lines to measure reporter gene expression of auxin-induced/ repressed or cell cycle controlled genes (DR5 and CycB1, respectively) showed enhanced GUS activity, when compared with mock-inoculated seedlings. To determine the contribution of phytohormone signaling pathways in the effect elicited by A. ustus, we evaluated the response of a collection of hormone mutants of Arabidopsis defective in auxin, ethylene, cytokinin, or abscisic acid signaling to the inoculation with this fungus. All mutant lines inoculated with A. ustus showed increased biomass production, suggesting that these genes are not required to respond to this fungus. Moreover, we demonstrated that A. ustus synthesizes auxins and gibberellins in liquid cultures. In addition, A. ustus induced systemic resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Pseudomonas syringae DC3000, probably through the induction of the expression of salicylic acid, jasmonic acid/ethylene, and camalexin defense-related genes in Arabidopsis.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Asselbergh, B., D. De Vleesschauwer, and M. Höfte. 2008. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant Microbe Interact. 21: 709-719. https://doi.org/10.1094/MPMI-21-6-0709
  3. Bais, H. P., S. W. Park, T. L. Weir, R. M. Callaway, and J. M. Vivanco. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci. 9: 26-32. https://doi.org/10.1016/j.tplants.2003.11.008
  4. Barrow, J. R. and P. Osuna. 2002. Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J. Arid Environ. 51: 449-459. https://doi.org/10.1006/jare.2001.0925
  5. Beckers, G. J. and S. H. Spoel. 2006. Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biol. (Stuttg). 8: 1-10. https://doi.org/10.1055/s-2005-872705
  6. Bent, E. 2006. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF), pp. 225-258. In S. Tuzun and E. Bent (eds.). Multigenic and Induced Systemic Resistance in Plants. Springer-Verlag, New York.
  7. Berrios, J., A. Illanes, and G. Aroca. 2004. Spectrophotometric method for determining gibberellic acid in fermentation broths. Biotech. Lett. 26: 67-70. https://doi.org/10.1023/B:BILE.0000009463.98203.8b
  8. Bostock, R. M. 2005. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43: 545-580. https://doi.org/10.1146/annurev.phyto.41.052002.095505
  9. Colon-Carmona, A., R. You, T. Haimovitch-Gal, and P. Doerner. 1999. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 20: 503-508. https://doi.org/10.1046/j.1365-313x.1999.00620.x
  10. Contreras-Cornejo, H. A., R. L. Macias, P. C. Cortés, and J, Lopez-Bucio. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol. 149: 1579-1592. https://doi.org/10.1104/pp.108.130369
  11. Costacurta, A. and J. Vanderleyden. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21: 1-18. https://doi.org/10.3109/10408419509113531
  12. Cuppels, D. A. 1986. Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 51: 323-327.
  13. Dong, X. 2001. Genetic dissection of systemic acquired resistance. Curr. Opin. Plant Biol. 4: 309-314. https://doi.org/10.1016/S1369-5266(00)00178-3
  14. Falasca, G., D. Zaghi, M. Possenti, and M. M. Altamura. 2004. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 23: 17-25.
  15. Ferreira, P. C., A. Hemerly, M. van Montagu, and D. Inzé. 1994. Control of cell proliferation during plant development. Plant Mol. Biol. 26: 1289-1303. https://doi.org/10.1007/BF00016475
  16. Finkelstein, R. R. 1994. Mutation at two new Arabidopsis ABA response loci is similar to the abi3 mutations. Plant J. 5: 765- 771. https://doi.org/10.1046/j.1365-313X.1994.5060765.x
  17. Glazebrook, J., W. Chen, B. Estes, H. S. Chang, C. Nawrath, J. P. Métraux, T. Zhu, and F. Katagiri. 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34: 217-228. https://doi.org/10.1046/j.1365-313X.2003.01717.x
  18. Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 763-796.
  19. Harman, G. E., C. R. Howell, A. Viterbo, I. Chet, and M. Lorito. 2004. Trichoderma species - Opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56. https://doi.org/10.1038/nrmicro797
  20. Higuchi, M., S. M. Pischke, P. A. Mähöne, K. Miyawaki, Y. Hashimoto, M. Seki, et al. 2004. In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. USA 101: 8821-8826. https://doi.org/10.1073/pnas.0402887101
  21. Himanen, K., E. Boucheron, S. Vanneste, E. J. de Almeida, D. Inze, and T. Beeckman. 2002. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14: 2339-2351. https://doi.org/10.1105/tpc.004960
  22. Hobbie, L. and E. Estelle. 1995. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7: 211-220. https://doi.org/10.1046/j.1365-313X.1995.7020211.x
  23. Hossain, M. Md., F. Sultana, M. Kubota, H. Koyama, and M. Hyakumachi. 2007. The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol. 48: 1724-1736. https://doi.org/10.1093/pcp/pcm144
  24. Hua, J. and E. Meyerowitz. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 262-271.
  25. Jefferson, A. R., A. T. Kavanagh, and W. M. Bevan. 1987. GUS fusions: Beta-glucuronidase as a sensitive and gene fusion marker in higher plants. EMBO J. 6: 3901-3907.
  26. Kazan, K. and J. M. Manners. 2009. Linking development to defense: Auxin in plant-pathogen interactions. Trends Plant Sci. 14: 373-382. https://doi.org/10.1016/j.tplants.2009.04.005
  27. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307.
  28. Lucero, M. E., J. R. Barrow, P. Osuna, I. Reyes, and S. E. Duke. 2006. Enhancing native grass productivity by cocultivating with endophyte-laden calli. Rangel. Ecol. Manage. 61: 124-130.
  29. Lugtenberg, B. and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  30. Luschnig, C., A. R. Gaxiola, P. Grisafi, R. Gerald, and R. G. Fink. 1998. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12: 2175-2187. https://doi.org/10.1101/gad.12.14.2175
  31. Masucci, J. D. and W. J. Schiefelbein. 1994. The rhd6 mutation of Arabidopsis thaliana alters root hair initiation through an auxin and ethylene associated process. Plant Physiol. 106: 1335-1346. https://doi.org/10.1104/pp.106.4.1335
  32. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  33. Nishimura, C., Y. Ohashi, S. Sato, T. Kato, S. Tabata, and C. Ueguchi. 2004. Genetic analysis of Arabidopsis histidine kinase genes encoding cytokinin receptors reveals their overlapping biological functions in the regulation of shoot and root growth in Arabidopsis thaliana. Plant Cell 16: 1365-1377. https://doi.org/10.1105/tpc.021477
  34. Pickett, B. F., K. A. Wilson, and M. Estelle. 1990. The auxin mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol. 94: 1462-1466. https://doi.org/10.1104/pp.94.3.1462
  35. Pieterse, J. M. C., A. Leon-Reyes, S. Van dern Ent, and S. C. M. Van Wees. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5: 308-316. https://doi.org/10.1038/nchembio.164
  36. Pozo, M. J. and C. Azcón-Aguilar. 2007. Unraveling mycorrhizainduced resistance. Curr. Opin. Plant Biol. 10: 393-398. https://doi.org/10.1016/j.pbi.2007.05.004
  37. Raeder, U. and P. Broda. 1989. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17-20.
  38. Schenk, P. M., K. Kazan, I. Wilson, J. P. Anderson, T. Richmond, S. C. Somerville, and J. M. Manners. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 97: 11655-11660. https://doi.org/10.1073/pnas.97.21.11655
  39. Shani, E., O. Yanai, and N. Ori. 2006. The role of hormones in shoot apical meristem function. Curr. Opin. Plant Biol. 9: 484- 489. https://doi.org/10.1016/j.pbi.2006.07.008
  40. Spoel, S., J. Johnson, and X. Dong. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104: 8842- 18847.
  41. Spoel, S., A. koornneef, S. Laessens, J. Korzelius, J. Van Pelt, M. Mueller, et al. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770. https://doi.org/10.1105/tpc.009159
  42. Spoel, S. H. and X. Dong. 2008. Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3: 348-351. https://doi.org/10.1016/j.chom.2008.05.009
  43. Stals, H. and D. Inzé. 2001. When plant cells decide to divide. Trends Plant Sci. 6: 359-364. https://doi.org/10.1016/S1360-1385(01)02016-7
  44. Tsavkelova, E. A., S. Y. Klimova, T. A. Cherdyntseva, and A. I. Netrusov. 2006. Microbial producers of plant growth stimulators and their practical use: A review. Appl. Biochem. Microbiol. 42: 117-126. https://doi.org/10.1134/S0003683806020013
  45. Ulmasov, T., J. Murfett, G. Hagen, and T. Guilfoyle. 1997. Aux/ IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963-1971. https://doi.org/10.1105/tpc.9.11.1963
  46. White, T. J., T. Brunts, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc. New York.
  47. Woodward, A. W. and B. Bartel. 2005. Auxin: Regulation, action, and interaction. Annu. Bot. 95: 707-735. https://doi.org/10.1093/aob/mci083

Cited by

  1. Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions vol.36, pp.5, 2013, https://doi.org/10.1111/pce.12036
  2. Chilli rhizosphere fungus Aspergillus spp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation vol.47, pp.10, 2011, https://doi.org/10.1080/03235408.2013.837633
  3. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture vol.62, pp.2, 2011, https://doi.org/10.1007/s13199-014-0273-3
  4. Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato vol.166, pp.3, 2011, https://doi.org/10.1111/aab.12199
  5. Host-specific transcriptomic pattern of Trichoderma virens during interaction with maize or tomato roots vol.16, pp.1, 2011, https://doi.org/10.1186/s12864-014-1208-3
  6. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0143353
  7. Plant-fungal interactions: What triggers the fungi to switch among lifestyles? vol.42, pp.3, 2011, https://doi.org/10.3109/1040841x.2014.958052
  8. Ecologically Different Fungi Affect Arabidopsis Development: Contribution of Soluble and Volatile Compounds vol.11, pp.12, 2011, https://doi.org/10.1371/journal.pone.0168236
  9. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects vol.163, pp.7, 2017, https://doi.org/10.1099/mic.0.000494
  10. Investigation on biosuppression of Fusarium crown and root rot of tomato (Solanum lycopersicum L.) and growth promotion using fungi naturally associated to Solanum linnaeanum L. vol.12, pp.7, 2011, https://doi.org/10.5897/ajmr2017.8777
  11. Preliminary Study of Hyptis pectinata (L.) Poit Extract Biotransformation by Aspergillus niger vol.349, pp.None, 2018, https://doi.org/10.1088/1757-899x/349/1/012004
  12. Isolation and Characterization of Mercury Resistant Trichoderma Strains from Soil with High Levels of Mercury and Its Effects on Arabidopsis thaliana Mercury Uptake vol.8, pp.7, 2018, https://doi.org/10.4236/aim.2018.87040
  13. A resourceful methodology to profile indolic auxins produced by rhizo-fungi using spectrophotometry and HPTLC vol.8, pp.10, 2011, https://doi.org/10.1007/s13205-018-1428-3
  14. Strategy Role of Mycorrhiza Inoculation on Osmotic Pressure, Chemical Constituents and Growth Yield of Maize Plant Gown under Drought Stress vol.10, pp.6, 2019, https://doi.org/10.4236/ajps.2019.106080
  15. Tobacco Growth Promotion by the Entomopathogenic Fungus, Isaria javanica pf185 vol.47, pp.1, 2011, https://doi.org/10.1080/12298093.2018.1562692
  16. Growth-promoting bioactivities of Bipolaris sp. CSL-1 isolated from Cannabis sativa suggest a distinctive role in modifying host plant phenotypic plasticity and functions vol.41, pp.5, 2011, https://doi.org/10.1007/s11738-019-2852-7
  17. No evidence of modulation of indirect plant resistance of Brassica rapa plants by volatiles from soil‐borne fungi vol.45, pp.5, 2011, https://doi.org/10.1111/een.12906
  18. Exploration of microbial stimulants for induction of systemic resistance in plant disease management vol.177, pp.3, 2011, https://doi.org/10.1111/aab.12631
  19. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant vol.22, pp.5, 2011, https://doi.org/10.3390/ijms22052651
  20. Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture vol.7, pp.4, 2011, https://doi.org/10.3390/jof7040314
  21. Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus vol.11, pp.7, 2011, https://doi.org/10.3390/metabo11070428