• Title/Summary/Keyword: plane strain condition

Search Result 181, Processing Time 0.02 seconds

Nonsteady Plane-strain Ideal Forming without Elastic Dead-zone

  • Chung, Kwansoo;Lee, Wonoh;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.120-127
    • /
    • 2002
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made under the plane-strain condition. In the ideal flow, material elements deform fellowing the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include numerical calculations made for a real automotive part under forging.

Effects of Deformation Conditions on Microstructure Formation Behaviors in High Temperature Plane Strain Compressed AZ91 Magnesium Alloys (고온 평면변형된 AZ91 마그네슘 합금의 미세조직 및 집합조직의 형성거동)

  • Minho Hong;Yebin Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • To investigate the effect of deformation condition on microstructure and texture formation behaviors of AZ91 magnesium alloy with three kinds of initial texure during high-temperature deformation, plane strain compression tests were carried out at high-temperature deformation conditions - temperature of 673 K~723 K, strain rate of 5 × 10-3s-1, up to a strain of -1.0. To clarify the texture formation behavior and crystal orientaion distribution, X-ray diffraction and EBSD measurement were conducted on mid-plane section of the specimens after electroltytic polishing. As a result of this study, it is found that the main component and the accumulation of pole density vary depending on initial texture and deformation caondition, and the formation and development basal texture components ({0001} <$10\bar{1}0$>) were observed regardless of the initial texure in all case of specimens.

A Study under behavior of tensile and vibration in composite plate by ESPI method (ESPI 법에 의한 복합재 평판의 인장 및 진동 거동에 관한 연구)

  • 김경석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.106-111
    • /
    • 1999
  • This study discusses a non-contact optical technique electronic, electronic speckle pattern interferometry(ESPI) that is well suited for in-plane and out-of-plane deformation measurement Used as specimen which has the boundary condition of two clamped parallel edges composite material AS4/PEEK[30/-30/90]s was analyzed by ESPI to determined the characteristics of tensile and vibration. These are quantitativly compared with the result of FEM analysis. Finally the results of this study are briefly summarized as follows : (1) In the in-plane strain analysis by comparison of theoretical results with experimental results qualitatively we confirmed that measurement errors are within 3 % in case of accuracy (2) From comparison of experimental vibration modes with numerical vibration mode shapes by the FEM analysis quantitatively we confirmed that vibration mode measurement by the ESPI has high accuacy.

  • PDF

Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions (임의의 성형조건을 갖는 박판의 평면변형율 해석)

  • Keum, Y.T.;Lee, S.Y.;Wagoner, R.H.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.25-36
    • /
    • 2008
  • The plane strain test can reproduce the real field condition and failure behavior precisely over other laboratory shear tests. Accordingly, this test has been utilized to investigate the shearing behaviors associated with overall failure behavior and local deformation of soils. However, most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment and also performing it. This restraint induces different results with real field because of shear stress on end plates. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. And the formation and development of shear band caused by the restrained effect of end plate and the deformation mechanism of sand under plane strain condition were examined.

Failure Mechanism Evaluation in Normally Consolidated Cohesive Soils by Plane Strain Test with Digital Image Analysis (평면변형률 시험에서 디지털 이미지 해석을 통한 정규압밀 점성토의 파괴거동 분석)

  • Kwak, Tae-Young;Kim, Joon-Young;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.49-60
    • /
    • 2016
  • Soil failure is initiated and preceded by forming and progressing of shear band, defined as the localization of deformation into thin zones of soil mass. To understand the failure mechanism of normally consolidated cohesive soil, the spatial distribution and evolution of deformation within the entire specimen need to be evaluated. In this study, vertical compression tests under plane strain condition were performed on reconstituted kaolinite specimens, while capturing digital images of the specimen at regular intervals during shearing. Overall stress-strain behavior from initial to post peak has been analyzed together with spatial distributions of deformations and shear band characteristics from digital images at 4 stages.

A Study on the Stress Concentration Phenomenon of a Dissimilar Joints (이종재 접합부에서의 응력집중현상에 관한 연구)

  • 조상명;김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 1992
  • In this study, the stress concentration phenomenon for the dissimilar joints(ceramic-metal) bonded by thermal treating using a soft-insert metal(copper) was investigated with the aid of FEM(finite element method) under the load condition of uniform tension. The analysis was carried out by the supposing that stress states are plane stress or plane strain and elastic or elastic-plastic. And the Von Mises yield criterion and the incremental theory as plastic flow were adopted in this analysis. As the summarized results obtained, the stress concentration phenomenon was severer as the soft insert metal was thicker, in plane strain than in plane stress and in elastic-plastic state than in elastic state. Furthermore, the inducing mechanism of stress concentration was well expressed by the constraint forces(Fc) generated between the soft and the hard material.

  • PDF

The Development of Incompatible Finite Elements for Plane Stress/Strain Using Multivariable Variational formulation (다변수 변분해법에 의한 비적합 4절점 사각형 평면응력 및 평면변형률 요소의 개발)

  • 주상백;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2871-2882
    • /
    • 1994
  • Two kinds of 4-node plane stress/strain finite elements are presented in this work. They are derived from the modified Hellinger-Reissner variational principle so as to employ the internal incompatible displacement and independent stress fields, or the incompatible displacement and strain fields. The introduced incompatible functions are selected to satisfy the constant strain condition. The elements are evaluated on several problems of bending and material incompressibility with regular and distorted elements. The results show that the new elements perform excellently in the calculation of deformation and stresses.

Strain based finite element for the analysis of heterogeneous hollow cylinders subjected to thermo-mechanical loading

  • Bouzeriba, Asma;Bouzrira, Cherif
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.825-834
    • /
    • 2022
  • The effectiveness and accuracy of the strain-based approach applied for analysis of two kinds of heterogeneous hollow cylinders subjected to thermal and mechanical loads are examined in this study. One is a multilayer cylinder in which the material in each layer is assumed to be linearly elastic, homogeneous and isotropic. Another is a hollow cylinder made of functionally graded materials with arbitrary gradient. The steady state condition without heat generation is considered. A sector in-plane finite element in the polar coordinate system based on strain approach is used. This element has only three degrees of freedom at each corner node. Analytical solutions available in the literature are presented to illustrate the accuracy of the sector element used. The obtained results for displacements and stresses are shown to be in good agreement with the analytical solutions.