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Nonsteady Plane-strain Ideal Forming without Elastic Dead-zone
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Abstract: Ever since the ideal forming theory has been developed for process design purposes, application has been limited
to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made
under the plane-strain condition. In the ideal flow, material elements deform following the minimum plastic work path (or
mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional
orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part
shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include
numerical calculations made for a real automotive part under forging.
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Introduction

In order to improve trial-and-error based conventional
practices for optimizing forming processes, a direct design
theory, called the ideal forming theory, has been previously
developed. Early work on this, however, was limited to two-
dimensional steady flow of rigid-perfect plastic solids[1-3].
Hill{4], who proposed the name, ideal flow, generalized the
effort to three-dimensional steady flow. Further extension to
non-steady three-dimensional flow was made by Wienecke
and Richmond[5], but without specific application to
forming.

For the general ideal flow including work-hardening solids,
Chung and Richmond[6] proposed the ideal forming theory
in which materials deform following the minimum plastic
work path (or mostly the proportional true strain path).
Chung and Richmond[7] showed that a special deformation
theory of plasticity is derived from the flow theory for such
ideal flow. Practical design application for non-steady flow
followed mainly for sheet forming without friction[§-11]
and also with frictional boundary condition{12].

Here, the ideal forming theory is applied for the non-
steady plane-strain case, considering isotropic rigid-perfect
plasticity. For such cases, to account for the minimum plastic
work condition in the ideal flow, principal stretch lines are
materially embedded and its kinematics can be effectively
described using the two-dimensional orthogonal convective
coordinate system. In this coordinate system, the orthogonal
base vectors represent principal directions of deformation,
which are materially fixed during ideal flow. A numerical
code to generate the orthogonal convective coordinate system
was developed based on the characteristic method in this work.
Besides kinematics, the equilibrium condition and schemes
to optimize preform shapes for a prescribed final part shape
and also to define the evolution of shapes and frictionless
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boundary tractions were established. For demonstration
purposes, numerical calculations were made for a real
automotive part under forging.

Kinematics

Orthogonal Convective Coordinate System

For Mises isotropic materials, the minimum plastic work
path for ideal flow complies with the proportional true strain
path[13,14] while, for Tresca materials, the condition requires
only the absolute maximum principal line to be materially
embedded[15]. Therefore, for the plane-strain ideal flow,
two principal stretch lines are materially fixed for both Mises
and Tresca cases and its kinematics is effectively described
using the orthogonal convective coordinate system: the £— 1
principal line system.

In the £~ 17 coordinate system, which is shown in Figure 1
based on the x — y Cartesian system, the following relationship
is obtained for the (covariant) base vectors, g, and g;:

Figure 1. The orthogonal convective & — 17 coordinate system.
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Note that g¢ has an angle ¢ from the x-axis, while g¢ and g,
are orthogonal in Figure 1. As for the local area, it can be
assumed to be uniformly unit without losing generality{16];
ie.,

hehy = 10, @)

Conserving the local area as shown in equation (2) also
accounts for incompressibility in rigid-plasticity.
Geometric consideration in Figure 1 leads to

Xop = hcos@ y,gzhsin(p'
1, 1
Xog = —pSiNQ ., = 5cosg, S

where the scaling factor, /= 4z and h, = 1/h. The compatibility
conditions are

Foen = Xong Voen T Vopg @
and, therefore, the following equations are obtained from
equations (3) and (4), after ¢ = 0.0 is assumed without losing
generality:

3

hh,y+ @, =0 h @+ h,e=0. 5)
Equation (5) shows two partial differential equations for two

unknowns, # and ¢, which define the orthogonal convective
coordinate system having a uniform unit local area.

Characteristic Method
Consider the following second order partial differential
equation:

which is the non-linear hyperbolic equation. After applying
v=2@,and w = @, equation (6) becomes

13_v_v28_1v_ 1é_&_‘4’_0 (7)
20& on 20n Q& T

Equation (7) is equivalent to equation (5), when v = h* and
w = —@. The procedure demonstrates that equation (7) is the
quasi-linear hyperbolic equation, which can be solved using
the characteristic method. The method provides the following
two ordinary differential equations along the characteristic
lines, o and B lines, from equation (7):

d Inh-dp = 0 for which n,;=-h" (c—line)

d Inh+dg =0 for which 7,.=h" (B-line),
: ®
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Figure 2. The characteristic (o and f) and principat (£ and 7) lines.

which are expressed in the convective coordinate system.
In order to express the characteristic lines in the x—y
coordinate system, consider

dx = (x,¢ ihzx,n)d§ = h(cos F sing )d&

dy = (y,éihzy,n)dé = h(sing * cos¢ )d&. 9

The upper and lower signs in equation (9) are valid for the
o and S lines, respectively. Therefore,

dy _ sinp—cos¢ _

n .
dx cosg+ sing tan((p_ ;J for the o line

dy _sin@+cosg _ ( 7_1') .
& cosp—sing tan ¢+ for the B line, (10)

while, for the principal lines,

% = tang for the &-line (dn =0)
dy _ -1 RT -
Zx = g for the 7-line (d&=0). (1)

Equations (8), (10), and (11) show that the characteristic
lines are not orthogonal in the £— 1 system, but they are
orthogonal and located between the principal lines in the
x —y coordinate system as shown in Figure 2. Example
numerical solutions to construct the orthogonal convective
coordinate system under several boundary conditions are
elsewhere[17].

Equilibrium Condition
In the two-dimensional space, the equilibrium condition

becomes

0 o

xysx

+0,,=0, (12)

where ©,, 0, and 0,, are the Cartesian Cauchy stress
components, while the yield stress condition for the rigid-

Cpox + Opyoy =
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perfect plasticity of Mises and Tresca cases is

(0,-0,) +40, = 4k (13)
or

o, = -p tkcos2¢ o0,=-p F kcos2e

C,, = tksin2g (14)

where k is the shear yield stress and p =—(0, + 0,)/2. The
upper and lower signs in equation (14) are for the cases when
he>hg and hg < hy , respectively, as shown in Figure 3 (here,
hg is the value at the initial configuration). Note that o, is
uniquely determined for the Mises case, 0, = —p = (0, + 0,)/
2 = (0; + 0y)/2, while o, is a non-unique value between O
and o, for the Tresca case.
When equation (14) is applied, equation (12) becomes

Py L 2ksin2 @@, F 2kcos2¢@,, = 0
p,, F 2kcos2@,, F 2ksin2¢@,, = 0 (15)

in the x — y coordinate system and this becomes

Oxy
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Figure 3. Yield stress status on Mohr’s circle for (a) kz> h and (b)
he<hg.
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P F2kh’ @, =0 p,h’ F2kg, =0 (16)

in the £— 1 system when ¢@=0.0, after considering the
following inverse relationship of equation (3):

g, = %cosq) &,y =% sing 1, =—hsing 1,,=hcosg.

17

When ¢ is eliminated using equation (5), equation (16)
becomes

£_ + = £ + =
(52 tnh)g = 0 (£ £ 1ok, =0, (18)
therefore,

p _ + o

2—k+1nh =C for h§>h§

p _ [}

-2—k—lnh = C  for hg>hy (19

where C* and C~ are arbitrary constants to be decided
considering the boundary conditions. For the elastic dead
zone in which there is no deformation (i.e., / ¢ = h(é ), the
stress state is not unique within the yield stress surface so
that the consideration of the equilibrium condition becomes
involved if the dead zone is included in designing. Further
discussions for such cases are referred to the work by Chung
et al [18].

Final Shape (Prescribed)

The real-part geometry to be formed is shown in Figure 4,
which is symmetric with respect to the y-axis. Here, the
boundary contours are supposed to match with materially
embedded principal lines so as not have frictional boundary
tractions. To apply the ideal forming for this part, this final
part shape should comply with the kinematic condition
discussed in equation (5). Therefore, when A and ¢ are
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Figure 4. Schematic geometry of a real-part prescribed for ideal
forming design.
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properly prescribed along the line ABCD (the &-line with
1 = 0), the line EFG should be obtained from equation (5) as
one of the &-lines. For this particular part, the analytic
solution of equation (5) was available and the solution
provides the following parametric expressions for the
boundary contours[19]: x =0 for AE, y=0 for EF, y=y,
for AB, x=xp+x; forCD, y =y, + yy(1 + €™) for DG, while

2 tan@

x(0)=x, + x]——

(O =%+ 45 a6)
for BC (20)

¥(0) =y, +y1(1—aﬁ

tan@ 6~ .
x(8)=xy+x—2T Lo cosO+sinf
( ) 0 lyld( 6) '\/y_O( )
: for FG
6-r, .
¥(0) =y, +,V1(1 *Ez-e—))—e * [vo(cos B—sin )
(21

where 0<0<7/2 and d(8) = (1 + (x,tan8/y,)")"".
Here, x5, x;, yo, y1, and ry(=-In A/}70) are constants
describing the part geometry shown in Figure 4: x, = 1.0239,
x; =0.553, y,=0.0264, y, = 0.9083.

From equation (20),
2 2 2 2
x sec” @ x{tanOsec” @
x(8),4= . 3 y(9),9=—1————3—=tan9x(9),9,
y1d () y1d (0)
(22)

which verifies that 8is equivalent to ¢, the angle between the
tangential direction of the &-line with the x-axis. The same
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Figure 5. The distribution of the scaling factor A along the
boundary lines ABCD and EFG on the final shape.
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procedure for equation (21) also shows the same.
Along the line ABCD, A value is also prescribed as

-6
e

_%_

In order to obtain the relationship between £ and 8(=g) for
the line BC, consider

h (23)

b=l 24)

where [ is the arc length along the line BC. Therefore, the
relationship becomes

I x 39
A50=0) = [ 6,40 = [ 7250 =10 =

8 go="2[" =7 g
0r(0) " ¥ n()d’(6)

(25)
From equations (23) and (23), X&) and h(&) on the line
BC are obtained. Similarly,

Aé = yoA&x =0 for AB
T

AE = yplty = g for CD 26)

The (&) and A() values on the line ABCD obtained from
equations (23)-(26) provide the boundary conditions to
construct the orthogonal convective coordinate system
(therefore, the final part configuration) using the numerical
scheme based on the characteristic method. Figure 5 shows
the variation of (&) along the lines ABCD and EFG.

The numerically obtained final part shape agrees well with
the one obtained from the parametric expressions in Figure
6, confirming the validity of the numerical method. The

characteristic lines generated for the numerical solution are

y

Numerical Result

LS - ©  Parametric expression

1.0 4

0.5 1
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E
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Figure 6. The principal line coordinate system numerically and
analytically obtained to describe the prescribed final part.
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Figure 7. Characteristic lines.

also plotted in Figure 7.
Optimum Initial Shape

Among many possible families to define the initial shape,
a family of rectangular shapes with a uniform local scaling
factor, hg( =h"), was considered here for simplicity. Also,
as an optimization criterion for the initial shape, the
condition of the minimum average absolute strain was
considered.

The average absolute strain X is defined as

JIEIdA
R

= @7

In equation (27), € = In(#/h°) where the superscripts f and
o refer to the final and initial configurations, respectively,
while A is the total cross-sectional area of the part on the x—y
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Figure 8. The average absolute strain (K) with respect to the initial
scaling factor (h¢ ).

plane. Therefore, the following condition provides the
optimum A°:
dK _ 0
dh®
The width of the initial shape W’ is then obtained
considering the definition of the scaling factor 4; i.e.,

(28)

W = [ndE = n°eP7 - &, (29)

where £°¢ and E*F are £ values at the 7 lines, DG and AE,
respectively. Also, the initial thickness 77 is obtained from
the incompressibility condition: T° = A/W".

The average absolute strain K as a function of the uniform
initial scaling factor A’ is plotted in Figure 8. The figure shows
that the minimum K is obtained for A°( = k;,,) = 26.3. The
initial shape obtained from this optimum A° is shown in

y
1.2
1
1.0 - l ,'/» final shape
0.8 - ’] |
0.6 -4 initial shape with k°=hty, =7.874 I /
. / ;

047 / // initial shape with A%=hSy =26.3
0.2 // / /

______________ /
0.0 | 2 )

0 1 2 3 X

Figure 9. The initial and final shapes.
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(a)

(b)

Figure 10. Schematic view of the orthogonal convective
coordinate system for (a) the optimum initial and (b) final shapes.

Figure 9: W’ =3.56 and T° = 0.038. Schematic view of the
orthogonal convective systems for the optimum initial and
final shapes are shown in Figure 10. When the principal
strain along the £ lines is calculated based on the scaling
factor h values in the initial and final configurations, the
whole final part is divided into two zones as Figure 6
suggests: the one with the positive strain and the other with
the negative strain. Therefore, for this particular part, the
optimum initial rectangle introduces the elastic dead zone
(or line in this case) in the middle of the part, which might
require internal friction along this line to satisfy the
equilibrium condition.

With the following choice of the initial scaling factor,
formation of the elastic dead line in the middle of the part
can be avoided:

K< h!. (=7874) for which ¢/>0
h>hl (=37.88)  for which ¢ <0 (30)

where the subscripts min and max refer to the minimum and
maximum values, respectively. Figure 8 suggests that the
average absolute strain becomes minimum as the initial
scaling factor approaches to K. or hl_ when the elastic

min max
dead zone is not allowed.

Evolution of Shapes and Boundary Tractions

After the optimum initial shape was obtained, the series of
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Figure 11. Evolution of the part shape when A° = 4,

intermediate shapes and frictionless external boundary
tractions were subsequently calculated. Assuming that the
boundary conditions for the geometric variables, 4 and ¢,
proportionally vary, the following conditions were imposed
for the principal line, 1) = 0, to calculate intermediate shapes:

ho) = o’ + (1 - a)h°

o(0) = ap'+ (1-a)¢’ 31)

where 0.0<a<1.0 (o varies from 0.0 to 1.0, which
represents the initial and the final shapes, respectively). For
demonstration purposes, only the case with 4, =4/. s
considered here and the shape evolution obtained for
a=0.0,0.25,0.5,0.75, 1.0 is shown in Figure 11.

For the case with A% = hﬁm, the intermediate shapes
obtained under the condition imposed by equation (31)
provide that €:2 0 everywhere during the whole process.
Therefore, equation (19-1) is applied along with the stress
state shown in Figure 3(a) for the calculation of the evolving
frictionless boundary tractions. When the traction-free
condition is further required on the line DG, the following
relationship is obtained from equation (19-1):

C' = 3+ mA’. 32)

Note that #°C is constant along the boundary line DG
during forming so that the traction-free condition is allowed
for the whole boundary line DG.

For the symmetric boundary line AE, the normalized
stress traction becomes,

(33)

which is uniform. Similarly, along the -lines, including the
two boundary lines, ABCD and EFG,

- _"5) -p h
o¢(=— = 241 = 2In—% (34)
k k hDG
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Figure 12. Mohrs circle for the stress status on the line AE and DG
when (a) traction is free on the line DG and (b) boundary tractions
are all negative.

a=0.25

a=0.75

Figure 13. Normalized stress (5’1, ) distribution.
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where h is the value on those boundary lines. Therefore, the
normalized boundary tractions on the lines ABCD and EFG
become,

Gp=L-1= 2(1nh%c- 1) (35)

The stress state along the lines DG and AE, expressed
using Mohr’s circles, is schematically shown in Figure 12(a).
The figure shows that the tensile boundary traction (positive
0y) is needed when the traction-free condition is imposed on
the boundary DG.

Since arbitrary hydraulic pressure can be added for
incompressible plasticity, the case with compressive boundary
tractions only can be achieved by uniformly adding pressure.
One of possiblé cases is obtained when ﬁE = () (therefore,
ogE = 2k) as shown in Figure 12(b). For such a case,

; h : h
& = 2(1nhTE+ 1), 5= 22 (36)

along the &-lines lines, including the lines, ABCD and EFG.
So that the boundary traction along the DG becomes

DG
52° = 2[m%+ 1). @37
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The variation of &y is shown in Figure 13 for o= 0.25,
05,075, 1.0.

Summary

The ideal forming theory, previously developed for
process design purposes, was successfully applied for a non-
steady plane-strain case. The minimum plastic work path,
which is the kinematical constraint for ideal flow, was well
accounted for using the orthogonal convective coordinate
system having uniform local area. Besides kinematics, the
equilibrium condition, schemes to optimize preform shapes
for a prescribed final part shape and also to define the
evolution of shapes and frictionless boundary tractions were
developed. Numerical solutions were obtained for a real part
under forging for demonstration purposes.
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