• Title/Summary/Keyword: plane recognition

Search Result 146, Processing Time 0.024 seconds

Recognition and Modeling of 3D Environment based on Local Invariant Features (지역적 불변특징 기반의 3차원 환경인식 및 모델링)

  • Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for various applications such as intelligent robots, intelligent vehicles, intelligent buildings,..etc. First, we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds.

  • PDF

Face Recognition using the Feature Space and the Image Vector (세그멘테이션에 의한 특징공간과 영상벡터를 이용한 얼굴인식)

  • 김선종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.821-826
    • /
    • 1999
  • This paper proposes a face recognition method using feature spaces and image vectors in the image plane. We obtain the 2-D feature space using the self-organizing map which has two inputs from the axis of the given image. The image vector consists of its weights and the average gray levels in the feature space. Also, we can reconstruct an normalized face by using the image vector having no connection with the size of the given face image. In the proposed method, each face is recognized with the best match of the feature spaces and the maximum match of the normally retrieval face images, respectively. For enhancing recognition rates, our method combines the two recognition methods by the feature spaces and the retrieval images. Simulations are conducted on the ORL(Olivetti Research laboratory) images of 40 persons, in which each person has 10 facial images, and the result shows 100% recognition and 14.5% rejection rates for the 20$\times$20 feature sizes and the 24$\times$28 retrieval image size.

  • PDF

Pipeline Positioning Method in Augmented Reality using Wall Plane Detection (증강현실에서 벽면 검출을 이용한 파이프라인 배치 방법)

  • Sang-Hyun Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1041-1050
    • /
    • 2024
  • BIM technology, which was introduced to systematically manage buildings, is also being combined with augmented reality technology to provide users with realistic services. In order for the BIM model to be accurately positioned in the real space, it is necessary to align the BIM modeling space with the augmented reality space. In this paper, we propose a method to accurately position a BIM model at the designed location when augmenting it into real space. In the proposed method, an augmented reality application is implemented by applying the Unity 3D game engine and the ARCore platform, which uses the plane recognition function of ARCore. We generate a marker on the detected plane to set the location of a BIM model, and correct the direction of the model using the normal vectors from the wall and floor. Implementation results show that the proposed method utilizes ARCore's plane recognition library to effectively compensate for spatial differences and accurately place the model in real-world space.

Wear Debris Analysis using the Color Pattern Recognition (칼라 패턴인식을 이용한 마모입자 분석)

  • ;A.Y.Grigoriev
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.54-61
    • /
    • 2000
  • A method and results of classification of 4 types metallic wear debris were presented by using their color features. The color image of wear debris was used (or the initial data, and the color properties of the debris were specified by HSI color model. Particle was characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used for the definition of classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

An Immersive Augmented-Reality-Based e-Learning System Based on Dynamic Threshold Marker Method

  • Lim, Sukhyun;Lee, Junsuk
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1048-1057
    • /
    • 2013
  • In recent years, augmented reality (AR) technologies have been the subject of great interest among many communities. In education applications, old-fashioned materials (or textbooks) are still used, despite remarkable AR developments in the industrial area. We present an AR system for education. Our system consists of an authoring tool that can be used to create educational content, a viewer that plays that content, and an engine to manage the tool and viewer. In our system, a marker unit recognizes a marker printed on a plane or a cubic plane by adaptively adjusting the threshold to have an excellent recognition rate in diverse environments and acquires corresponding data of the marker. Based on the system, we test 142 elementary school students for increased educational benefits using our system.

Wear Debris Analysis using the Color Pattern Recognition

  • Chang, Rae-Hyuk;Grigoriev, A.Y.;Yoon, Eui-Sung;Kong, Hosung;Kang, Ki-Hong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.34-42
    • /
    • 2000
  • A method and results of classification of four different metallic wear debris were presented by using their color features. The color image of wear debris was used far the initial data, and the color properties of the debris were specified by HSI color model. Particles were characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used fer the definition of a classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Off-axis pSDF Spatial Matched Filter for Pattern Classification (패턴분류를 위한 Off-axis pSDF 공간정합필터)

  • 임종태;박한규;김명수;김성일
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.83-88
    • /
    • 1991
  • Studies on space-invariant pattern recognition have been carried out from various approaches. Pattern recognition system using SDF filter, from weighted linear summation of tranining images, has been the focus of research since its first appearence. In this thesis, off-axis pSDF spatial matched filter has been constructed by combining angular multiplexing of off-axis reference plane wave with pSDF filter made from pseudo-inverse algorithm, and transformed to phase only filter. From observation of the correlation responses in the correlation plane, it is shown that proposed off-axis pSDF spatial matched filter is available to pattern classification and can be used for optical correlator.

  • PDF

Emotion Recognition by Hidden Markov Model at Driving Simulation (자동차 운행 시뮬레이션에서 Hidden Markov Model을 이용한 운전자 감성인식)

  • Park H.H.;Song S.H.;Ji Y.K.;Huh K.S.;Cho D.I.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1958-1962
    • /
    • 2005
  • A driver's emotion is a very important factor of safe driving. This paper classified a driver's emotion into 3 major emotions, can be occur when driving a car: Surprise, Joy, Tired. And It evaluated the classifier using Hidden Markov Models, which have observation sequence as bio-signals. It used the 2-D emotional plane to classfiy a human's general emotion state. The 2-D emotional plane has 2 axes of pleasure-displeasure and arsual-relaxztion. The used bio-signals are Galvanic Skin Response(GSR) and Heart Rate Variability(HRV), which are easy to acquire and reliable. We classified several moving pictures into 3 major emotions to evaluate our HMM system. As a result of driving simulations for each emotional situations, we can get recognition rates of 67% for surprise, 58% for joy and 52% for tired.

  • PDF

The Centering of the Invariant Feature for the Unfocused Input Character using a Spherical Domain System

  • Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.14-22
    • /
    • 2015
  • TIn this paper, a centering method for an unfocused input character using the spherical domain system and the centering character to use the shift invariant feature for the recognition system is proposed. A system for recognition is implemented using the centroid method with coordinate average values, and the results of an above 78.14% average differential ratio for the character features were obtained. It is possible to extract the shift invariant feature using spherical transformation similar to the human eyeball. The proposed method, which is feature extraction using spherical coordinate transform and transformed extracted data, makes it possible to move the character to the center position of the input plane. Both digital and optical technologies are mixed using a spherical coordinate similar to the 3 dimensional human eyeball for the 2 dimensional plane format. In this paper, a centering character feature using the spherical domain is proposed for character recognition, and possibilities for the recognized possible character shape as well as calculating the differential ratio of the centered character using a centroid method are suggested.

Color Pattern Recognition with Recombined Single Input Channel Joint Transform Correlator

  • Jeong, Man-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • Joint transform correlator (JTC) is a well known tool for color pattern recognition for a color image. Color images have red, green and blue components, thus in conventional JTC, three input channels of these color components are necessary for color pattern recognition. This paper proposes a new technique of color pattern recognition by decomposing the color image into three color components and recombining those components into a single gray image in the input plane. This new technique needs single input channel and single output CCD camera, thus a simple JTC can be used. We present various kinds of simulated results to show that our newly proposed technique can accurately recognize and discriminate color differences.