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Wear Debris Analysis using the Color Pattern Recognition
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Abstract : A method and results of classification of four different metallic wear debris were presented by using their color
features. The color image of wear debris was used for the initial data, and the color properties of the debris were specified by
HSI color model. Particles were characterized by a set of statistical features derived from the distribution of HST color model
components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure
was used for the definition of a classification plane. It was found that five features, which include mean values of H and S, median
S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In
this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of
debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the

automated wear particle analysis.
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Introduction

Wear debris analysis is one of the well known technologies for
machine condition monitoring. It is because the peculiarities of
machine elements interaction are well reflected in the process
of particle generations and finally in their morphology. Thus,
classification of wear debris in different morphological classes
provides valuable information on the current state of wear
occurred in machine systems.

In general, metallic wear debris is differentiated into several
classes, €.g., rubbing, cutting, spherical, laminar, fatigue chunk
and severe sliding wear particles. It has been recognized that
each type has its own generation mechanism involving the
specific wear process [1,2]. For instance, cutting wear particles
are produced by the penetration, ploughing or cutting of one
surface by another. Spherical particles are generated by
cavitation erosion, welding and grinding processes [3,4]. The
presence of severe sliding wear particles in a machine usually
indicates a lubrication problem, as the consequence either of
lubricant breakdown, or of unusually high loading.

In the discussed context, the morphology is mainly defined
by shape, texture and color of wear debris. Normally, the wear
particles are examined visually by an expert of considerable
experience. However, break-through in computer and imaging
technologies in these days makes automatic evaluation of the
particle morphology possible. For different types of wear
particles, their morphology may be characterized by a set of
numerical features. Then, appropriate classification methods
can be used for identifying particles into recognizable types

[5].
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Several numerous approaches for the automated particle
classifications has been proposed for the quantitative desc-
ription of particle morphology. But practically, all of the works
have dealt only with the problems of shape and texture, not
with those of color. The situation can be explained at least by
two reasons. Firstly, the concept of color is basically
qualitative. The color is not an absolute natural value since the
persistence of color is formed by human eyes and brain.

Secondly, there were no cheap and accessible devices for
color image acquisition. Usual way for exact color measure-
ment is to estimate the light spectrum distribution and to use
spectrophotometers. Only in the last decade, color CCD
cameras became wide spread. In recent years, integration with
appropriate hardware and software allows direct input of color
images to the computer for analysis.

Color is an important feature in wear debris analysis [1, 6].
While the shape and texture features allow to differentiate
metallic particle according to their prehistory of formation, the
color allows to define the material depending on the properties
of debris. The color directly related to the particle composition,
so that it can be used for identification of corrosion product or
wear severity in terms of particle temper color.

The composition of a sample particle extracted from the oil
normally represents the materials of worn surfaces, conta-
minants and products of their chemical reaction initiated by
water, heating and other reagents. At present, the objects are
categorized by their color features in some broad groups: white
metals, copper based alloys, red and black oxides. In oil
lubricated conditions, such materials more often meet as steel,
copper, lead, tin, chromium, silver and titanium. Ferrous
oxides are usually divided into two groups: red or black oxides.
As a result, this categorization allows to define the source of
particle generation, lubrication condition, severity of wear
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process and the presence of contamination in a lubricant,
which consequently provide valuable diagnostic information
on the current state of machinery.

In this work, the problem of wear debris classification was
solved by the color features of wear debris. Three wide groups
of materials included steel, copper based alloys and iron oxides
(red and dark). Because of some difficulties in exact color
matching procedure, a method of tri-stimuli color characteri-
zation was used. For this purposes, color images of wear debris
obtained with a CCD camera was used for the initial data. The
method based on the calculation of statistical features was
derived from the values of HSI'model color specification. The
multidimensional scaling procedure and probabilistic decision-
making functions were used for the particle classification.

Basic Theory

Color Formation
Visible light is electromagnetic radiation in the wavelength
range of 400 nm to 700 nm. Color is the perceptual sensation
of electromagnetic wave spectral distribution of visible light
incident upon the retina of a human visual system. It must be
mentioned that color is not a natural property of an object and
perception of color only exists in the human eye and brain.
From this point of view, the color sensation is constrained to
the character of spectral distribution of visible light.

The physical production of color requires a source of light,
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exposed object and eye or some other type detectors. The
electromagnetic radiance of light source is expressed by
relative energy emitted at each wavelength and represented in
the form of spectral power distribution (SPD), often in
components each representing 5 or 10 nm band. The different
sources have different shapes of the distribution. The SPD of
daylight are presented in Fig. 1 (a).

When light interacts with an object, it transmitted, absorbed
and reflected. The character of interaction is different
according to the light wavelengths. For metals, the process can
be described in terms of band theory of energy levels and
efficiency of absorption and re-emission of photons. Then
photons absorbed by electrons rise to a higher level of energy
and re-emit the photon out of metal thus providing strong
reflection of a polished metal. The efficiency of reflection
depends on photon energy, so it is different for each metal. As
a result, the reflected light is different from the source.

The effect of interaction of light with object is described by
spectral reflectance or transmittance curves (SRC, STC), which
characterizes the amplitude ratio of reflected/transmitted and
primary light SPD on corresponded wavelengths. Fig. 1 (b)
represents the spectral reflectance curves of typical industsial
objects. It must be mentioned that in real cases there are other
phenomena, which can contribute to the appearance of objects
such as surface roughness, absorbed layers or fluorescence
which results in variation of SRC (or STC) from the standard
one.
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Fig. 1. (a) Spectral energy distribution of daylight; (b) Spectral reflectance curves of a set of typical metal products, 1 steel, 2
brass; 3 sheet copper, 4 iron oxides; (d) The spectral response curves 1 phototube, 2 eye, 3 photocell. All the data are

qualitative,
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The eye or other kind of detector is characterized by its
response to the light of different wavelengths. The examples of
spectral response function (SRF) of eye and some type of
detectors are presented in Fig. 1 (¢). So, the stimuli or SPD of
light which form color perceptual sensation is expressed as

S = SPD; X SRC, X SRF, (H

where S is SPD of stimuli; SPD; spectral power distribution of
light source; SRC, spectral reflectance curve of an object;
SRF, spectral response curve of a recipient. The symbol X
denotes element-by-element multiplication.

Color Measurement

For the technical applications, it is needed to have numerical
measure of color. Spectral distributions of electromagnetic
waves can be measured accurately by using photospectro-
meters, but for industrial applications the approach is not
convenient. The current methods of color characterization are
based on the fact that any colors can be specified in terms of
three numbers representing the amount of the three primary
lights added together [7]. In a qualitative form, it can be
expressed as additive mixtures of 3 fixed primary colors.

The 3 color primaries can be chosen arbitrarily. Human
retina also has three types of color photoreceptors: it is a
logical choice to make them correspond approximately to the
primaries of human visual system. As a result of color
matching experiments, a standard set of such primaries has
been specified by CIE(Commission Internationale de
LEclairage). It consists of X Y Z primaries that correspond to
colors of red, green and blue. The corresponded response
functions x, )-1,2 of human receptors are determined by
measuring the mean color perception of a sample of human
observers over a range of visible light. The response functions
are shown in Fig. 1 (d). These curves specify how an SPD of
stimuli can be transformed into a set of three numbers that
specify a color. According to the approach, the quantitative
measure of color is specified as a set of 3 numbers defined in
equation (2)

X = JAQAf(l)dl 2)

and similar for Y and Z. Here Q, is defined as SPDs X SRC,.
The obtained values are usually normalized so that:

x+y+z=1. (3

The resulted values of x, y, and z are considered as coordinates
of 3 dimensional color space (color cube). One of the ways to
represent all possible colors generated by mixing of primaries
is chromaticity diagram, which shows color composition as a
function of red (x) and green (y) (Fig. 2 (a)). For any value of x
and y, the corresponded value of b is obtained from Eq.3.

Color Models

For specification of a color in some standard way, color models
are used as follows. They are to introduce a transformation
from 3D XYZ space into a new set of coordinates. Most of

Blue
Green

Blue-Green White “-—~99Q___ (b)

Blue

<7
X Red Green

(a) (c)
Fig. 2. (a) Chromaticity diagram and corresponded
wavelength (the data is qualitative); (b) RGB color model
scheme; (c) HSI color model scheme.

color models in use today are oriented either toward hardware
or toward applications where the color manipulation is a main
goal.

One of the commonly used for color image acquisition
devices is RGB model. The model uses percentages of red,
green and blue to create colors. Each component has levels of
intensity, ranging from black to the component's full intensity.
In computer graphic, the range is usually from 0 to 255 and
each value of model components occupies one byte of
memory. The graphical representation of the model is color
cube shown in Fig. 2 (b). One of the advantages of the model is
its simplicity in hardware realization and direct matching to the
physical model of color formation and human vision. But the
model is not fairly suvitable for color manipulation because R,
G, and B components incorporate chromatic and luminance
values.

It was found that HSI model is more appropriate for the

color manipulation. The HSI color model is based on the hue,
saturation and, brightness components [8]. The color model is
defined with respect to the color triangle (Fig. 2 (c)). The
triangle vertices are defined by three initial colors. Hue is the
color attribute that describes a pure color, whereas saturation
gives a measure of degree to which a pure color diluted by
white light. Therefore, the hue H of color point P is the angle
of the vector shown with respect to the red axis. The saturation
S of color point P is proportional to the distance from the
center of triangle. The farther P is from the center of the
triangle, the more saturated its color is. Intensity I in the HSI
model is measured with respect to a line perpendicular to the
triangle and passing through its center. While chromaticity and
luminance components are separated, it allows simplifying
some algorithms in image processing. That makes the HSI
model handy tools in image processing.
Colors given in the RGB model can easily be converted to the
values of HSI model. In the work, we used the following
equations for converting incoming data from hardware to the
HSI model for image processing [9]

1=§m+6+m,
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S =255- min(R, G, B), 4

3
(R+G+B)
1 05[(R-G)+(R-B)]
[(R-G)’ +(R-B)(G-B)]

H = cos

Experimental Device

Fig. 3 represents an experimental device used for color image
acquisition. The device consists of an optical microscope
equipped by a single chip CCD color camera, a PC with
peripherals and an image capture board. Additional color
monitor was used for an auxiliary visualization device. The
signal formed by CCD camera was put into PC via capture
board. The specially developed software allows displaying
image in PC monitor, capture and save it in one of the known
image file formats for future analysis.

While the discussed device is assembled from general-
purpose units, some technological consideration of the scheme
is needed. The CCD cameras are constructed for converting
optical image into video signal, which displayed into a monitor
for observation. The human perceptual response to light
intensity is highly nonlinear and can be expressed by the
following function

where I, and I, are original light intensity and response, 7 is
equal to 1/3. The cathode ray tube in monitors have almost
nonlinear response for applied voltage of y=5/2. CCD
cameras usually have linear response to light intensity and
usually converted to obtain non-linearity of y=2/5. As a result
of this, those images captured by CCD camera look naturally
when observed on CRT. When absolute values of light
intensities with a camera are measured, this non-linearity
should be compensated with signal processing with y=2Y.
The presented scheme of video signal compensation is realized
in the developed software for image processing.

The color data from CCD camera depends on lightening
conditions. Voltage change of microscope illumination lamp
leads to change of the source light SPD and the resulted color
data (see Eq.l). To avoid the situation, the following
calibration procedure was used. Lighting condition was tuned
by matching images on display with a standard one. As the
standard image was used, an image of rough copper surface
with settings of acquisition device corresponded to the
maximal visual matching displayed image when observed
through microscopy oculars. The color balance of display was
adjusted by Colorific technology. During the experiment,
conditions of image acquisition was not changed.

Initial Data

Different kind of materials and real wear debris were used for
the test samples in this study. The sample set of actual
materials was used for reference points that compare their
color properties to real wear debris. The set includes several
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Fig. 3. General scheme of the wear debris image capture

system: 1 optical microscope with CCD camera; 2 additional
color monitor; 3 computer; 4 display; 5 color printer.

materials of machine elements and their corrosion products:
copper alloys, medium carbon steel, iron oxide powder and
collected from a surface of corroded steel surfaces.

Wear particles were obtained from the oil samples according
to the standard procedure of wear debris analysis. The particles
were deposited on the glass substrate by RPD(Rotary Particle
Depositor) technique, flushed by drops of a solvent and dried.
The collection of wear debris was corresponded to different
stages of an equipment operation and included different types
of debris verified by experts.

The objects were investigated in an optical microscopy in
reflected white light. Color images were acquired using the
device described above. The image format was 320 x 240
pixels with 24-bit color depth. From the images of wear debris
and material surfaces, samples color textures were extracted.
Each of the samples represented by a set of non-overlapped
square sub-regions of 75 by 75 pixel size. Typical examples of
particle images and extracted sub-regions are shown in Fig. 4.

Feature Extraction

It was assumed that material composition correlates to the
values of HSI color space components. This assumption is
rather general and does not contradict to the natural
representation. As shown in preliminary investigations, the
domains of HSI color space occupied by wear debris forms
several common regions and there is no linear separability
between debris of different types.

The situation of poor separability is well known in the field
of pattern recognition and explained in terms of high
correlation of primary features. The usual way to overcome the
problem is to derive a set of secondary order features from the
initial one, which aims at separating correlated and non-
correlated feature's content. Unfortunately there is no theory
for "good" feature selection and the problem is solved in the
frame of traditional statistical approach. In the first stage, the
sets of primary features are transformed into secondary one.
The next is to investigate a new feature space and to optimize
the corresponded feature space. The aim of the optimization is
eliminating redundant features and to reduce dimensionality of
the space. It leads to the simplifying of objects classification
scheme and computational burden. The last stage is
construction of decision-making rules, which allows classi-
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Fig. 4. Example of wear particles and surface of reference materials images (original images are in color). Wear particles: a --
steel; b -- copper alloy; ¢ -- corroded steel particle. Textures of reference materials: d medium carbon steel; e -- bronze; f --
cooper; g - iron oxide powder; Images of subregions: e -- g steel; h -- j cooper and cooper based alloys; | -- n iron oxide:

fying the object to one of the classes by some superposition of
secondary features. Thus, the problem of wear debris
composition characterization is reduced to the definition of an
appropriate feature set.

To derive the second order features from measurements of
color properties of a wear debris image, histograms of HSI
values distributions were represented. It is known that one of
the simplest approaches for describing histogram is to use its
moments {10]. If A(x) is a histogram, the n™ moment of
variable x about the meansx is

t, = Y (-0 "p(x), n>1 0

i

where p(x;) is probability of feature x,. It was chosen moments

up to the 4th order. Taking into account that location of
occupied area of particles color features in the HS section of
HSI space is directly correlated to their composition, the mean,
median and geometrical mean of H and S values were also
used in the feature set. The last statistics of I-values was not
included to avoid some difficulties related to unequal lighting
condition of captured images. As a result, the vector of 15
elements represents each of samples. To avoid influence of
scale factor of features, they were normalized as:

X; = , ®)

where ©° is standard deviation of feature, and x is calculated
for samples analyzed test set.

The given feature set was optimized by a principal
component analysis. The preliminary investigation of full-
factor space was shown that more than 50% of feature
variances are accounted by 2 factors only. According to that,
two-factor space was selected for analysis and the
corresponding feature loadings were calculated under varimax
rotation strategy. The graph of the loadings is presented in Fig.
5 (a).

The graph analysis shows that the strong feature variation is

j k P m n

observed along the both axes. This data can be interpreted in
terms of linear separability of objects. With the loadings
threshold of 7>0.75 by screen test were extracted 5 most
significant features (Fig. 5 (b)). The corresponded border on
the factor plane is shown by the ellipse in Fig. 5 (a). The
features are located on the longest distances from the factor
plane origin. So, according to the obtained results, the initial
feature set can be reduced up to the 5 features, which with high
probability can form linear separable feature space of
concerned objects.

Particle Classification

For investigation of feature space, the concept of the distance
measure in the feature space is used. According to this concept,
the features of the objects are considered as coordinates of
some point in a multidimensional space. The distance between
two points expresses the similarity of objects: if any points are
close to each other, this indicates that there is a strong
similarity between the corresponding objects. When the color
features are used as coordinates, the location of a point
depends on the peculiarity of the corresponding surface color
properties, which are defined by material light reflectance
ability and strongly relate to its native properties.

Furthermore, due to many factors such as surface roughness,
the color of different points of the same objects varies in their
values. For this reason, the objects of the same natures mapped
in the feature space occupy some blurred domain cluster. The
aim of investigation of color space is to define class borders, by
which the objects can be divided into different clusters.

The most natural way of feature space analysis is
visualization of cluster locations. But a human observer has
difficulty in interpreting high-dimensional space on its original
form. Direct visualization of more than 3 dimensional spaces is
impossible. For overcoming the problem, we used a
multidimensional scaling technique. The method allows
mapping multidimensional data onto the reduced dimension
space. Under this mapping, the inherent spatial structure of
clusters is preserved as much as possible. This structure
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preservation is achieved by fitting mutual location of k points
of N-dimensional space in M (M<N) dimensional one, such
that their mutual distances from each other approximate the
corresponding distances in N-space.

In common cases, the approach is based on a procedure,
which rearrange objects around the space defined by a
requested number of dimensions and checks how well the
distances between objects in the space match the distances in
the initial space. It is not an exact procedure and uses a
function minimization algorithm that evaluates different
configurations with the goal of maximizing the goodness of fit.

One of the approaches of measuring the distance in a multi-
dimensional space is to use a d-dimensional Euclidean metric,
an obvious generalization of two-dimensional distance:

d 172
€y = {Z (xik_xil)2i| ) )

i=1

where ¢, is Euclidean distance in d-dimensional space; x;, x;
are the i-th components of feature vectors of k£ and / objects
respectively. In order to evaluate how well a particular
configuration reproduces the observed distances, the stress
measure was used as follow,
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where €7, e, are observed distances and reproduced one
respectively. There are different approaches for a multi-
dimensional scaling procedure [11]. In the work, we used
Shepard-Kruskal algorithm of the procedure [12]. The result of
mapping initial 5-dimensional space onto the 2D one is shown
in Fig. 6 (a).

Inter-class Separation

The obtained result shows good clustering for the initial 3
groups of objects along the axis of Dimension 1 (D1) into 3
categories: steel particles, corrosive and copper contained. The
clusters have linear separability in the orthogonal direction of
axis. The corresponded inter-class borders are showed on the
plot.

For the analysis of a membership of any particle to one of
classes from the initial feature space, it needs to be mapped on
a classification plane. It is necessary to determine its
dimensions for this purpose. For an analytical way of
interpreting, the dimensions are to use multiple regression
techniques to regress the features on the coordinates of the
classification plane. As we have orthogonal linear separability
of cluster along one axis (D1), it is possible for us to define the
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dimension only that axis The equation of the axis dimension
are defined by the linear regression as follows:

d=ag+daf, . {n=1.5) (11)

H

The goodness of the fitting is estimated as the relative error of
point location along the axis DI and not exceeds 5% of their
real location. The graph of observed values versus predicted is
presented in Fig. 6 (b). Correlation of the data equals to 0.999
with O correlation between residual and observed values. So,
the definition of D1 axis allows defining corresponded
coordinate of any object.

The border of two linearly separable classes can be
represented as

D, =d,. 12)

This line divides the entire space of a plane on two half-spaces
with the corresponded classes. The decision making about a
membership of a wear particle to one of classes ~ is reduced to
check of the following condition

={l{d<01_2 (13)
2ld>D, _,

where is the coordinate of inter-class border and is the
coordinate of classified particle on corresponded axis. The
given approach can be propagated for the # number of classes
as follows:

c= ilDi~1,i<d<Di,i+l;i = ] n, DO,i = -9, Dn’n+1 = oo, (14)

Intra-class Separation of Oxidized Particles

The result obtained above allows classifying analyzed particles
into 3 classes that are initially formed in the test samples:
copper based alloys, corroded and steel particles. In practice,
the information on various type of steel and copper alloy
particles is used for solving the problem of particle
determination only. But in the case of corrosion-affected
particles, it is possible to extract information about current
condition of lubricant as well as severity of operation of
controlled unit. The particles are classified into two subclasses
red and black oxides. The first one is interpreted as the final
reaction product of iron oxidation at room temperature. The
black oxides are interpreted as a result of excessive heat during
the particle generation.

The samples for the color textures of both types were added
in the test samples. According to the graph of particles
clustering presented above all, the particles are fallen into one
group. Fig. 7 (a) showed a magnified part of oxidized particles
domain of the graph. As it can be seen from the graph, the
particles formed two partially overlapped clusters. The
situation can be explained by the fact of significant variation of
particle color. It is known that there are different forms of iron
oxides varying in color in appearance, which can be extracted
from oil [1]. Similar to the previous discussed approach, the
interborder of classes can be defined as a line orthogonal to
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D1.

In the group of copper based particles, bronze debris was
included. The part of classification plane of the class is
presented in Fig. 7 (b). The particle of the class also can be
devided into two groups along the axis dimension of D2. In
that case, it is possible to define subclass border as a line
orthogonal to D2. The corresponded borders are shown in the
graphs.

Probabilistic Decision Making

The discussed above approach provides rigid classification, but
it has some drawbacks related to impossibility to classify
particles on the border of classes when d = D,,, or when
classes are intersected. In addition it is not reflected location of
classified object into class domain. It is clear that the object
location expresses the relation degree to the class. Furthermore,
it is rather optimistic to assume that the rigid inter-classes
borders will be saved for real investigation. Due to many
factors that lead to color variations, the particles of a class
randomly spread in the class domain and can be located on the
class borders. The objects located near the middle of a class
domain have stronger degree of class relation; otherwise, it is
less related.

For providing probabilistic recognition histograms of 4,
measure for each class of test sample was calculated. The
histograms were fitted by the curves of normal low
distribution. The obtained density functions are normalized by
their maximum values to obtain probability data. The results



Wear Debris Analysis using the Color Pattern Recognition 41

o o (@]
=y o) [es]
T T

Probaility

o
N

0 n ; ; ;
-2 -1 0 1 2
Dl classificaton axis

Fig. 8. Classification probabilistic functions of three types of
particles along D1 axis

are presented in Fig. 8 and illustrate the possibility of
probabilistic classification of particles for copper-based alloys,
iron oxides and steel materials. The decision making in
probabilistic approach concludes in assigning to the analyzed
particle class label corresponding to the curve with higher
probability coordinate in the classification plane. The similar
results can be obtained for intra-class differentiating of
particles on copper/bronze and red/dark oxides corres-
pondingly.

Results and Discussion

The presented data illustrate availability of wear debris
estimation by color features. Since we did not use complex
features and all of them are directly derived from the primary
measurements, the method can be reproduced in other
laboratories for other type of materials. As a result, it is
possible to define some type of standard of wear debris
composition map by accumulation all the data on one
classification plane. The plane can be used as a standard
reference map for wear debris identification.

The equation of linear transformation from standard code
was obtained with the coordinate values of the standard
reference map and 5 features using the multiple regression
technique. Mapping of arbitrary sampled particles on the
classification plan using this equation is shown in Fig. 9. In this
mapping, most of sampled particles were mapped on its own
category domain, but some were not. It may result from the
problems related to the color measurement in realization.

As stated above exact color measurement, evaluation of
spectral power distribution of reflected light is needed in some
standard conditions. The realization of such a method for
industrial application is not easy and cost-effective. For this
reason, the method presented in the paper was based on
commonly used hardware. One of the main drawbacks of the
approach is that it would be difficult to reproduce obtained
results on another set of hardware. Due to differences in
lighting conditions, light optical paths and sensitivity of
detectors, the final result would be different from obtained
here. To overcome the problem, it is needed to use an
appropriate calibration method.
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Fig. 9. Mapping results of sampled particles on
classification plane of three types of wear particles.

The problem of calibration in color science is not easy
because the color is not an absolute property and for its
realization is needed to use color standards. The calibration of
color usually involves definition of so-called color gamut of
evaluated system. The gamut is characterized by its position in
the color domain. The calibration procedure consists of the
position matching of real device gamut with standard one.

The full description of calibration method is out of contents
of this paper. But without development of such kind of
procedure, it would be impossible to develop a robust and
reliable method for wear debris color analysis that will share
common results of investigation in science community.

Conclusion

This paper has reported a method and results of 4 types
metallic wear debris classification using their color features.
Statistical features derived from histogram of HSI color model
was used for characterization particle color. Investigation of
extracted feature space by factor analysis allowed defining an
optimal feature set. Possibility of construction of a two-
dimensional classification plane from high order feature set of
the debris was demonstrated by a multidimensional scaling.

The study has shown that analyzed particles occupy
separable domains in the classification plane. Five features
include mean values of H and S, median S, skewness of
distribution of .S and /, that allow distinguishing copper based
alloys, red and dark iron oxides and steel particles. In this
work, a method of probabilistic decision-making of class label
assignment was proposed that was based on the analysis of
debris coordinates distribution in the classification plane.

The obtained results allow making conclusion about
possibility and availability of using color features for
automated wear debris analysis.
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