• Title/Summary/Keyword: plane geometry

Search Result 430, Processing Time 0.029 seconds

Gifted Middle School Students' Genetic Decomposition of Congruent Transformation in Dynamic Geometry Environments (역동적 기하 환경에서 중등 영재학생들의 합동변환 활동에 대한 발생적 분해)

  • Yang, Eun Kyung;Shin, Jaehong
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.4
    • /
    • pp.499-524
    • /
    • 2015
  • In the present study, we propose four participating $8^{th}$ grade students' genetic decomposition of congruent transformation and investigate the role of their dragging activities while understanding the concept of congruent transformation in GSP(Geometer's Sketchpad). The students began to use two major schema, 'single-point movement' and 'identification of transformation' simultaneously in their transformation activities, but they were inclined to rely on the single-point movement schema when dealing with relatively difficult tasks. Through dragging activities, they could expand the domain and range of transformation to every point on a plane, not confined to relevant geometric figures. Dragging activities also helped the students recognize the role of a vector, a center of rotation, and an axis of symmetry.

Artificial Magnetic Conductor(AMC) Polarizer Backed Circular-Polarized(CP) Antenna (인공 자기 도체 편파 변환기를 이용한 원형 편파 안테나)

  • Chang, Ki-Hun;Ahn, Ji-Hwan;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.459-467
    • /
    • 2010
  • A new type of circularly polarized(CP) antenna that is characterized by having both low-profile and greater axial-ratio bandwidth(ARBW) beyond existing antennas is introduced through analysis of artificial magnetic conductor(AMC) polarizer, and experimentally demonstrated. Although it is made use of a linear-polarized dipole antenna with close proximity to ground plane, it is backed by AMC polarizer so as to efficiently radiate with circularly changed polarization whose ARBW is determined by the texture geometry, whereas existing antennas exhibit CP surface-current on radiators, which limit ARBW. The mechanism of the polarization conversion is theoretically analyzed for ARBW, and the experimental properties including the impedance matching, CP radiation pattern, axial-ratio pattern, ARBW, and two-port isolation are discussed.

An experimental study of the behaviour of double sided welded plate connections in precast concrete frames

  • Gorgun, Halil
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Multi-storey precast concrete skeletal structures are assembled from individual prefabricated components which are erected on-site using various types of connections. In the current design of these structures, beam-to-column connections are assumed to be pin jointed. Welded plate beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is at present limited information concerning their detailed structural behaviour under bending and shear loadings. The experimental work has involved the determination of moment-rotation relationships for semi-rigid precast concrete connections in full scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and weld arrangements conformed with successful commercial practice. Proprietary hollow core slabs were tied to the beams by tensile reinforcing bars, which also provide the in-plane continuity across the connections. The strength of the connections in the double sided tests was at least 0.84 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.7 to 3.9 times the flexural stiffness of the attached beam. When the connections were tested without the floor slabs and tie steel, the reduced strength and stiffness were approximately a third and half respectively. This remarkable contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. In general, the double sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided welded plate connection test results are presented in this paper. The behaviour of single sided welded plate connection test results is the subject of another paper.

Mechanical Properties Prediction by Geometric Modeling of Plain Weave Composites (평직 복합재료의 기하학적 모델링을 통한 기계적 물성 예측)

  • Kim, Myung-jun;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.941-948
    • /
    • 2016
  • Textile composite materials have been widely applied in aerospace structures due to their various advantages such as high specific stiffnesses and strengths, better out-of-plane performances, impact and delamination resistances, and net shape fabrications. In this paper, a modified geometric model of repeating unit cell (RUC) is suggested based on the Naik's model for 2D plain weave textile composites. The RUC geometry is defined by various parameters. The proposed model considers another parameter which is a gap length between adjacent yarns. The effective stiffnesses are predicted by using the yarn slicing technique and stress averaging technique based on iso-strain assumption. And the stiffnesses of RUC are evaluated by adjusting the gap ratio and verified by comparing with Naik's model and experimental data for 2D plain weave composite specimens.

Effect of skin dose by materials located in treatment field (방사선 치료 시 조사야 내에 위치할 수 있는 이물질이 체표선량에 미치는 영향)

  • Hong, Chae-Seon;Kim, Kyung-Tae;Ju, Sang-Gyu;Kim, Jong-Sik;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Purpose : In radiotherapy, various materials are used to located in treatment field unintentionally. It increases the dose delivered to the skin by interactions of the X-ray within the materials and occurs unwanted skin reaction.(due to the dose build-up effect) This aim of the this study is to measure the increase in skin dose when 13 materials are located in treatment field. Methods : Photon beam measurements were made using an plane-parallel chamber (Markus, PTW-Freiburg) in a polystyrene phantom. skin dose were measured using various overlaying 13 materials. a fixed geometry of a $10{\times}10cm$ field, a SSD=100cm and photon energy 4MV on Varian CLINAC 600C accelerator were used for all measurements. Results : There is an increase in skin dose for all materials($16.4{\sim}160.1\%$). As a percentage of maximum dose, the lowest skin dose were measured for the underwear with silk($43.2\%$) and the highest were measured for the 100m1 fluid-bag($96.6\%$) Conclusion : There is a significant increase in skin dose with 13 materials in the treatment field. a significant increase in skin dose can occur which could produce unwanted skin reaction. considerations for placement of 13 materials to be outside the treatment field whenever possible should be used to keep skin dose to a minimum level.

  • PDF

Real-time Volume Rendering using Point-Primitive (포인트 프리미티브를 이용한 실시간 볼륨 렌더링 기법)

  • Kang, Dong-Soo;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1229-1237
    • /
    • 2011
  • The volume ray-casting method is one of the direct volume rendering methods that produces high-quality images as well as manipulates semi-transparent object. Although the volume ray-casting method produces high-quality image by sampling in the region of interest, its rendering speed is slow since the color acquisition process is complicated for repetitive memory reference and accumulation of sample values. Recently, the GPU-based acceleration techniques are introduced. However, they require pre-processing or additional memory. In this paper, we propose efficient point-primitive based method to overcome complicated computation of GPU ray-casting. It presents semi-transparent objects, however it does not require preprocessing and additional memory. Our method is fast since it generates point-primitives from volume dataset during sampling process and it projects the primitives onto the image plane. Also, our method can easily cope with OTF change because we can add or delete point-primitive in real-time.

A Defocus Technique based Depth from Lens Translation using Sequential SVD Factorization

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.383-388
    • /
    • 2005
  • Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.

  • PDF

Direction-of-Arrival Estimation in Broadband Signal Processing : Rotation of Signal Subspace Approach (광대역 신호 처리에서의 도래각 추정 : Rotation of Signal Subspaces 방법)

  • Kim, Young-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.166-175
    • /
    • 1989
  • In this paper, we present a method which is based on the concept of the rotation of subspaces. This method is highly related to the angle (or distance) between subspaces arising in many applications. An effective procedures is first derived for finding the optimal transformation matrix which rotates one subspace into another as closely as possible in the least squares sense , and then this algorithm is applied to the solution to general direction-of-arrival estimation problem of multiple broadband plane waves which may be a mixture of incoherent, partially coherent or coherent. In this typical application, the rotation of signal subspaces (ROSS) algorithm is effectively developed to achieve the high performance in the active systems for the case in which the noise field remains invariant with the measurement of the array spectral density matrix (or data matrix). It is not uncommon to observe this situation in sonar systems. The advantage of this techniques is not to require the preliminary processing and spatial prefiltering which is used in Wang-Kaveh's CSS focusing method. Furthermore, the array's geometry is not restricted. Simulation results are presented to illustrate the high performance achieved with this new approach relative to that obtained with Wang-Kaveh's CSS focusing method for incoherent sources and forward-backward spatial smoothed MUSIC for coherent sources including the signal eigenvector method (SEM).

  • PDF

3D image mosaicking technique using multiple planes for urban visualization (복수 투영면을 사용한 도심지 가시화용 3 차원 모자이크 기술)

  • CHON Jaechoon;KIM Hyongsuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.41-50
    • /
    • 2005
  • A novel image mosaicking technique suitable for 3D urban visualization is proposed. It is not effective to apply 2D image mosaicking techniques for urban visualization when, for example, one is filming a sequence of images from a side-looking video camera along a road in an urban area. The proposed method presents the roadside scene captured by a side-looking video camera as a continuous set of textured planar faces, which are termed 'multiple planes' in this paper. The exterior parameters of each frame are first calculated through automatically selected matching feature points. The matching feature points are also used to estimate a plane approximation of the scene geometry for each frame. These planes are concatenated to create an approximate model on which images are back-projected as textures. Here, we demonstrate algorithm that creates efficient image mosaics in 3D space from a sequence of real images.

Adsorption Characteristics and Structure of 4,4'-Bis(mercaptomethyl)biphenyl on Silver by Surface-enhanced Raman Scattering and Density Functional Theory Calculations

  • Eom, So Young;Lee, Yu Ran;Kim, Hong Lae;Kwon, Chan Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.875-880
    • /
    • 2014
  • Adsorption of 4,4'-bis(mercaptomethyl)biphenyl (44BMBP) on silver nanoparticles has been investigated by surface-enhanced Raman scattering (SERS) spectroscopy. In addition, the Raman spectra of 44BMBP in solid state and in basic condition have been obtained for comparative study to elicit the characteristics of adsorption. The observed Raman and SERS spectra were analyzed comparing with the normal modes and vibrational frequencies from density functional theory (DFT) calculations performed for the feasible structures of 44BMBP molecule. On the basis of excellent agreement between the calculated and the experimental results, the molecule is found to have both the cis- and trans-forms for the mercaptomethyl groups in the solid state as well as in the basic condition. In contrast, the molecule is found to be chemisorbed on the silver surface by forming two Ag-S linkages only in the cis-form but not in the trans-form due to the steric interruption, which indicates the parallel orientation of molecules on the surface. Particularly, the spectral features in the SERS spectra such as the absence of the C-H stretching band and enhancement for the out-of-plane skeletal modes are confirmatory for the parallel geometry through ${\pi}$ interaction between the phenyl rings and the metal surface, based on the electromagnetic surface selection rule.