• 제목/요약/키워드: plane axisymmetric

검색결과 92건 처리시간 0.024초

교량구간에서의 열차하중에 의한 지반진동 해석법 (Ground Vibration Analysis Methods for Train Transit on Bridges)

  • 윤정방;이종재;김두기;심종민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.357-364
    • /
    • 1998
  • In this paper, ground vibration analysis methods for train transit on bridges are studied. Train loads acting on the piers are evaluated considering the interactions between the trains and the bridge. The 2D in-plane wave propagation method and the axisymmetric wave propagation method are used in the ground vibration analysis, and then the results of the ground vibration are compared. A modified axisymmetric method is presented, which can consider the effect of the train loadings on a series of piers as the train moves.

  • PDF

축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스 (Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode)

  • 박찬일
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

정밀단조 해석을 위한 최적 속도장에 관한 연구 (A Study on the Optimum Velocity Fields in Precision Forging)

  • 이종헌;김영호;김진욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.837-841
    • /
    • 1997
  • An upper bound elemental technique(UBET) program has been developed to analyze forging load, die-cavity filling and optimum kinematically admissible velocity fields for flashless forging. The simulation for flashless forgings are applied plane and axisymmetric closed-die forging with rib-web type cavity. The kinematically admissible velocity fields for inverse triangular and inverse trapezoidal elements, are used to analyze flashless forging. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load in plane-strain and axisymmetric forging are in good agreement with experimental results.

  • PDF

A simple plane-strain solution for functionally graded multilayered isotropic cylinders

  • Pan, E.;Roy, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.727-740
    • /
    • 2006
  • A simple plane-strain solution is derived in this paper for the functionally graded multilayered isotropic elastic cylinder under static deformation. The solution is obtained using method of separation of variables and is expressed in terms of the summation of the Fourier series in the circumferential direction. While the solution for order n = 0 corresponds to the axisymmetric deformation, that for n = 2 includes the special deformation frequently utilized in the upper and lower bounds analysis. Numerical results for a three-phase cylinder with a middle functionally graded layer are presented for both axisymmetric (n = 0) and general (n = 2) deformations, under either the traction or displacement boundary conditions on the surface of the layered cylinder. The solution to the general deformation case (n = 2) is further utilized for the first time to find the upper and lower bounds of the effective shear modulus of the layered cylinder with a functionally graded middle layer. These results could be useful in the future study of cylindrical composites where FGMs and/or multilayers are involved.

비축대칭 압출 공정의 유한 요소 해석 (Finite Element Analysis of the Non-axisymmetric Extrusion Process)

  • 신현우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.27-46
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition, is combined with the slab method. To define the die geometry for non-axisymmetric extrusion, area mapping technique was used. Streamlined die surface was used to miniminze the total extrusion pressure. Extrusion of square, hexagonal and "T" section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

上界解法에 의한 軸對稱 後方押出의 塑性變形 解析 (Analysis of plastic deformation through axisymmetric backward extrusion using upper-bound method)

  • 한철호
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.330-336
    • /
    • 1989
  • 본 연구에서는 상계해법을 이용하여 축대칭 후방압출에 있어서 압출하중뿐 아니라 소성변형역의 형상 및 비유동영역(dead metal zone)까지 에측이 가능한 단순하고 체계적인 이론해석법을 제안하고 이에 대한 실험을 수행하여 확인해 보고자 한다.

Time harmonic interactions in fractional thermoelastic diffusive thick circular plate

  • Lata, Parveen
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.39-53
    • /
    • 2019
  • Here in this investigation, a two-dimensional thermoelastic problem of thick circular plate of finite thickness under fractional order theory of thermoelastic diffusion has been considered in frequency domain. The effect of frequency in the axisymmetric thick circular plate has been depicted. The upper and lower surfaces of the thick plate are traction free and subjected to an axisymmetric heat supply. The solution is found by using Hankel transform techniques. The analytical expressions of displacements, stresses and chemical potential, temperature change and mass concentration are computed in transformed domain. Numerical inversion technique has been applied to obtain the results in the physical domain. Numerically simulated results are depicted graphically. The effect frequency has been shown on the various components.

플래시 없는 비축대칭 단조에 관한 연구 (A Study on Flashless Non-Axisymmetric Forging)

  • 배원병;김영호;최재찬;이종헌;김동영
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.42-52
    • /
    • 1995
  • An UBET(Upper Bound Elemental Techniquel) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless non-axisymmetric forging. To analyze the process easily, it is suggested that the deforma- tion is divided into two different parts. Those are axisymmetric part in corner and plane- strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, form which the upper-bound forging load, the flow pattern, the grid pattern, the velocity distribution and the effective strain are deter- mined. To show the merit of flashless forging, the results of flashless and flash-forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

텅스텐 중합금의 부피분율, 입자형상에 따른 단열전단밴드 형성 연구 (The Effects of Volume Ratio and Shape on the Formation of Adiabatic Shear Band in WHA)

  • 이승우;송흥섭;문갑태
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.682-690
    • /
    • 2002
  • The formation of adiabatic shearband in tungsten heavy alloys(WHA) was studied in this investigation. Five prismatic specimens were loaded by high velocity impacts and treated as plane strain problems. To find out the effect of particle's volume ratio, specimens containing 81%, 93% and 97% volume percents of tungsten particles were used. Also the effects of particle's geometry and size on the formation of shearband were studied for 81% volume percent alloys by small size particle model, large size particle model and undulated particle models, and the results were discussed.be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, or incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.