• 제목/요약/키워드: plane Strain Problem

검색결과 112건 처리시간 0.025초

일관장 개념의 평면변형률 요소에의 확장 (Extension of Field-Consistency to Plane Strain Elements)

  • 김용우
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1799-1809
    • /
    • 1995
  • The applicability of the field-consistency paradigm, which was originally employed for analysis of locking due to constrained energy having the second power of a strain, is extended to the constrained energy having a quadratic form of strain. For the extension, nearly-incompressible plane strain problem is considered by introducing the concept of reduced minimization. The field-consistent analysis of the plane strain problem leads to a clear and systematic understanding on the relation amongst constraints imposed on element, spurious constraint -free optimal points, and integration order used.

경계요소법을 이용한 평면변형율요소의 확률해석 (Probability Analysis of Plane Strain Element using Boundary Element Method)

  • 전정배;윤성수;박진선;이형렬
    • 한국농공학회논문집
    • /
    • 제54권4호
    • /
    • pp.39-46
    • /
    • 2012
  • The objectives of this study is intended to analyze stresses using the boundary element method and probability analysis for agricultural structure. Loads and material properties are an important factor when analyzing the structure. Until now, designing structure, loads and material properties are applied deterministic value. However, load and material properties involve uncertainties due to those change probabilistic and deterministic methods could not consider uncertainties. To solve these problems, the reliability analysis based on probability properties scheme was developed. Reliability analysis is easy to approach to analysis frame structure, however it has limitation when solving plane stress strain problems a kind of agricultural structures. The BEM (Boundary Element Method) is able to analysis plane strain problems by boundary conditions. Thus, this study applied boundary element method to analysis plane strain problem, load and material properties as a probabilistic value to calculate the analytical model using Monte Carlo simulations were developed.

평판용접에 관한 평면변형 열탄소성 해석 (The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate)

  • 방한서;한길영
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • 제4권1호
    • /
    • pp.19-37
    • /
    • 2012
  • This paper presents the results of analytical and numerical analyses of the effects of performing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay. Closed-form solutions are obtained which allow the determination of the principal effective stresses and the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical state is not equal to the mean of the other two principal stresses, except when the clay is initially isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by means of the Almansi finite strain approach. Results are compared with published data which were determined using finite element and finite difference methods.

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • 제12권1호
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

A new approach for the cylindrical cavity expansion problem incorporating deformation dependent of intermediate principal stress

  • Zou, Jin-Feng;Xia, Ming-yao
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.347-360
    • /
    • 2017
  • The problem of cylindrical cavity expansion incorporating deformation dependent of intermediate principal stress in rock or soil mass is investigated in the paper. Assumptions that the initial axial total strain is a non-zero constant and the axial plastic strain is not zero are defined to obtain the numerical solution of strain which incorporates deformation-dependent intermediate principal stress. The numerical solution of plastic strains are achieved by the 3-D plastic potential functions based on the M-C and generalized H-B failure criteria, respectively. The intermediate principal stress is derived with the Hook's law and plastic strains. Solution of limited expansion pressure, stress and strain during cylindrical cavity expanding are given and the corresponding calculation approaches are also presented, which the axial stress and strain are incorporated. Validation of the proposed approach is conducted by the published results.

Plane strain bending of a bimetallic sheet at large strains

  • Alexandrov, Sergei E.;Kien, Nguyen D.;Manh, Dinh V.;Grechnikov, Fedor V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.641-659
    • /
    • 2016
  • This paper deals with the pure bending of incompressible elastic perfectly plastic two-layer sheets under plane strain conditions at large strains. Each layer is classified by its yield stress, shear modulus of elasticity and its initial percentage thickness in relation to the whole sheet. The solution found is semi-analytic. In particular, a numerical technique is only necessary to solve transcendental equations. The general solution is cumbersome because different analytic expressions for the radial and circumferential stresses should be adopted in different regions of the whole sheet. In particular, there are several alternative ways a plastic region (or plastic regions) can propagate. However, for any given set of material and process parameters the solution to the problem consists of a sequence of rather simple analytic expressions connected by transcendental equations. The general solution is illustrated by a simple example.

Deformation estimation of plane-curved structures using the NURBS-based inverse finite element method

  • Runzhou You;Liang Ren;Tinghua Yi ;Hongnan Li
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.83-94
    • /
    • 2023
  • An accurate and highly efficient inverse element labelled iPCB is developed based on the inverse finite element method (iFEM) for real-time shape estimation of plane-curved structures (such as arch bridges) utilizing onboard strain data. This inverse problem, named shape sensing, is vital for the design of smart structures and structural health monitoring (SHM) procedures. The iPCB formulation is defined based on a least-squares variational principle that employs curved Timoshenko beam theory as its baseline. The accurate strain-displacement relationship considering tension-bending coupling is used to establish theoretical and measured section strains. The displacement fields of the isoparametric element iPCB are interpolated utilizing nonuniform rational B-spline (NURBS) basis functions, enabling exact geometric modelling even with a very coarse mesh density. The present formulation is completely free from membrane and shear locking. Numerical validation examples for different curved structures subjected to different loading conditions have been performed and have demonstrated the excellent prediction capability of iPCBs. The present formulation has also been shown to be practical and robust since relatively accurate predictions can be obtained even omitting the shear deformation contributions and considering polluted strain measures. The current element offers a promising tool for real-time shape estimation of plane-curved structures.

The stress analysis of a shear wall with matrix displacement method

  • Ergun, Mustafa;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.205-226
    • /
    • 2015
  • Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • 제58권4호
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.