• Title/Summary/Keyword: pipeline natural gas

Search Result 165, Processing Time 0.022 seconds

Dynamic Behavior of Buried Pipelines Constructed by Domestic and USA Specifications (국내 및 미국 시방서에 따라 시공된 지중매설관의 동적거동)

  • Jeon, Sang-Soo;Kim, Jae-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • Lifeline Damages induced by earthquake loading brings not only a structure damage but the communication problems by the interruption of various energy utilities such as electric power, gas, and water resources. Earthquake loss estimation systems in USA and Japan, called as HAZUS (Hazard in US) and HERAS (Hazards Estimation and Restoration Aid System), respectively, have been established for the purpose of efficient responding to the earthquake hazard. Sufficient damage records are required to establish these systems. However, there are insufficient data set of damage records obtained from previous earthquakes in Korea. In this study, according to the construction specifications of the pipelines in both Korea and USA, the behavior of both ductile and brittle pipelines embedded in dense sand overlying various soils, such as clay, sand, and gravel were examined with respect to the pipeline characteristics under various earthquake loadings. The applicability of pipeline damage prediction used in HAZUS program to Korea has been investigated.

A Study on the Integrated Fusion Technology Between a Carbon Dioxide Emission and a District Cooling Energy Using a Cold Energy ($CO_2$ 배출문제와 냉열이용 지역집단 냉방에너지에 관한 통합적 융합기술 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.34-40
    • /
    • 2006
  • This paper provides a fusion technology between a district cooling energy system and an environment conservation policy based on the energy savings and reusable cold energy resources. The district heating and cooling systems are very effective ways for an energy saving, a cost reduction and a safety control. It is necessary to equalize the energy savings and an environmental preservation policy for an improved human lift. A gasification process of a liquefied natural gas, cooling water from deep seawater and an ice water thermal storage system may produce a cold energy. A district cooling system is used to cool an apartment, office buildings and factory facilities with a cooling energy supply pipeline. LNG cooling energy will switch a conventional air-conditioning system, which is operated by on electrical energy and a Freon refrigerant. Coincident with significant clean energy and operating cost savings, LNG cold energy system owen radical reductions in an air-borne pollutant, $CO_2$ and the release of environmentally harmful refrigerants compared with that of the conventional air-conditioning system. This study provides useful information on the fusion technology of a LNG cold energy usage and energy savings, and environmental conservation.

  • PDF

Comparative Study on Mechanical Behavior of Low Temperature Characteristics of Polymeric Foams for Ships and Offshore Structures (폴리머 폼의 선박 및 해양구조물 적용을 위한 극저온 기계적 거동 특성 분석)

  • Park, Seong-Bo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.495-502
    • /
    • 2014
  • Glass-reinforced polyurethane foam (R-PUF) is widely used as the primary and secondary insulation of Mark-III type liquefied natural gas (LNG) cargo system. And, polyurethane foam (PUF) and polyisocyanurate foam (PIR) are often used for insulation of onshore structures or LNG storage and pipeline system. These polymeric foam materials are known for the characteristics that mechanical properties are dependent on strain rate and temperature. In this study, compression tests for R-PUF, PIR, and PUF were carried out for the estimation of mechanical behaviors under the cryogenic environment. The range of thermal condition was from room temperature to 110K and strain rates were $10^{-3}s^{-1}$ and $10^{-4}s^{-1}$. The test results were analyzed based on the conditions of strain-rate and temperature.

The Implementation of Natural Gas Pipeline and Power Systems Interconnection for Power Economy And Clean Environment in North-Eastern Asia Region (동북아지역의 전력경제와 청정환경을 위한 천연가스파이프라인 및 전력계통연계의 추진)

  • Yoon, Kap-Koo;SunWoo, Hyun-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.248-252
    • /
    • 1998
  • The ACE Engineering, Inc. (ACE) of Seoul, Korea and The Energy Systems Institute (SEI) of Irkutsk, Russia has extensively studied the formation of an interconnected electric power systems throughout the North Eastern Asia Region(NEAR). The region encompasses East Siberia (ESR), Far East of Russia(FER), North East China(NEC), Mongolia(MON), North Korea(NKOR), South Korea(SKOR). Although geographically adjacent to each other, these countries and territories have different levels and rates of economic development, possess different reserves of energy resources which complement each other and hence, can interact to their mutual benefits. This Project is called Peace Network Project (PNP) because it seems to contribute for development of power economy and clean environment. In a word, the PEACE Network is expected to serve as "Power Economy And Clean Environment Network" and to promote the international cooperation. to expedite the peaceful reunification of North & South Korea and to revive the Korean culture in the North, and eventually contribute to the human prosperity.

  • PDF

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.

A Numerical Study on the Factors of the Flow Hunting in a Orifice Meter (오리피스 유량계의 유동헌팅 영향인자에 관한 전산유체역학적 연구)

  • Shin, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.449-455
    • /
    • 2012
  • During the measurement of the flow rate of gases such as natural gas, flow hunting is observed in most orifice meters but the intensity of flow hunting at each metering system shows different characteristics. In order to investigate why such a difference occurs and whether the difference actually influences metering error, pipeline network analysis on the main factors and characteristics of flow hunting was carried out in a previous study. Following this, in this study, computational fluid dynamics (CFD) analysis was carried out to clarify the relation between flow instability and flow hunting and determine the factors influencing the orifice meter depending on the intensity of upward pressure fluctuation, time interval, and flow rate. Finally, we showed that the pressure hunting rate is a function of the ratio of the pressure difference before and after an orifice meter. On the basis of CFD analysis results, we also presented some major factors and relations influencing flow hunting.

Remote Field Eddy Current Testing for Detection of Stress Corrosion Cracks in Gas Transmission Pipelines (가스 파이프라인 상의 압력 부식에 의한 흠집 검사를 위한 원격 와전류 탐상 기술)

  • Kim, Dae-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.305-308
    • /
    • 2006
  • Magnetic flux leakage (MFL) pigs are traditionally used for the detection of gross corrosion on steel pipelines used for the transmission of natural gas. Alternative nondestructive evaluation (NDE) modalities are required for the detection of stress corrosion cracking (SCC) which tends to exist in colonies oriented axially along the length of the pipeline. This paper describes the use of multiphase rotating magnetic fields in the remote region of the probe as a possible SCC detection mechanism. Details of a prototype pig and test rig are given and the challenges associated with the finite element modeling of the device are discussed. Initial experimental results show that this novel NDE modality is sensitive to axially oriented tight cracks.

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.

Analysis of Trench Slope Stability in Permafrost Regions According to the Equipment Load (동토 파이프라인 매설공사 시 장비하중에 의한 트렌치 안전성 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Lee, Jae-Hyuk;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, the need of alternate energy resources is increasing due to the global warming issue. The natural gas buried in the extremely cold regions of Alaska and Siberia is of much interest these days. However, the construction standards are needed to be used in extremely cold regions. Particularly, more research work need to be carried out on the trench stability so that the safety of the workers is ensured and the damage to the construction machinery can also be reduced resulting in smaller construction period. In this study, the process for lowering of the pipelines of 30 and 40 in. diameters in the ground conditions (silt and peat) of Yakutsk, Russia was analyzed. The slopes of the ground surface were considered as $0^{\circ}$, $10^{\circ}$, and $20^{\circ}$ to be excavated in summer and winter. The analysis results show that the weight of pipelayer affects the trench stability. Numerical analysis was performed by considering the types of pipelayers, distance between the trench and pipelayer, and the distance between the pipelayers placed longitudinally along the trench. The results show that as the distance between the pipelayer and the trench decreases, the factor of safety of the slope decreases with an increase in the slope of the ground surface. When the slope of the ground surface was $20^{\circ}$, the breakout surface was anticipated to continue from the pipelayer to the trench boundary. In winter season, stability problem of the trench was not observed when the slope of the ground surface was less than $20^{\circ}$.

Stress-Strain-Strength Characteristics of Frozen Sands with Various Fine Contents (세립분 함유량에 따른 동결 사질토의 응력-변형률-강도 특성)

  • Chae, Deokho;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.31-38
    • /
    • 2015
  • Recently, the participation on the development of the natural gas pipeline in Russia as well as the recent construction of the second Korean Antarctic research station, the Jangbogo station provide the research interests on the behavior of the permafrost ground. To investigate the effect of fines on the mechanical responses of frozen sands, unconfined compression tests were performed on the frozen sands with 0, 5, 10 and 15% of fine contents at -5, -10 and $-15^{\circ}C$. The poorly graded (SP) Joomunjin sand and kaolinite, silt with low plasticity (ML) were used for the preparation of the frozen soil specimens. The mechanical responses of the tested soils were investigated via unconfined compression tests in the temperature controlled laboratory and analyzed in terms of peak unconfined compressive strength and secant modulus at 50% of the peak strength. As the fine contents increase, the unfrozen water contents increase and thus the strength and stiffness of frozen soils decrease. The increment of the stiffness and strength due to the temperature decrease vary with the fine contents.