• Title/Summary/Keyword: pipeline model

Search Result 402, Processing Time 0.031 seconds

SPECTRAL ELEMENT DYNAMIC ANALYSIS OF THE PIPELINE CONVEYING INTERNAL UNSTEADY FLOW (비정상류가 흐르는 파이프의 스펙트럴 요소 동역학 해석)

  • Seo, Bo-Sung;Cho, Joo-Yong;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.925-928
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics equations. The spectral element dynamic analyses are then conducted to evaluate the accuracy of the present spectral element model and to investigate the vibration characteristics and internal fluid transients of an example pipeline system.

  • PDF

Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline (고압 이산화탄소 파이프라인의 감압거동 특성에 관한 수치해석적 연구)

  • Huh, Cheol;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • To inject huge amount of $CO_2$ for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of $CO_2$ pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure $CO_2$ pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.

Hop-by-Hop Dynamic Addressing Based Routing Protocol for Monitoring of long range Underwater Pipeline

  • Abbas, Muhammad Zahid;Bakar, Kamalrulnizam Abu;Ayaz, Muhammad;Mohamed, Mohammad Hafiz;Tariq, Moeenuddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.731-763
    • /
    • 2017
  • In Underwater Linear Sensor Networks (UW-LSN) routing process, nodes without proper address make it difficult to determine relative sensor details specially the position of the node. In addition, it effects to determine the exact leakage position with minimized delay for long range underwater pipeline monitoring. Several studies have been made to overcome the mentioned issues. However, little attention has been given to minimize communication delay using dynamic addressing schemes. This paper presents the novel solution called Hop-by-Hop Dynamic Addressing based Routing Protocol for Pipeline Monitoring (H2-DARP-PM) to deal with nodes addressing and communication delay. H2-DARP-PM assigns a dynamic hop address to every participating node in an efficient manner. Dynamic addressing mechanism employed by H2-DARP-PM differentiates the heterogeneous types of sensor nodes thereby helping to control the traffic flows between the nodes. The proposed dynamic addressing mechanism provides support in the selection of an appropriate next hop neighbour. Simulation results and analytical model illustrate that H2-DARP-PM addressing support distribution of topology into different ranges of heterogeneous sensors and sinks to mitigate the higher delay issue. One of the distinguishing characteristics of H2-DARP-PM has the capability to operate with a fewer number of sensor nodes deployed for long-range underwater pipeline monitoring.

A study on the System Process of Production pipeline of 3D animation (3D Animation 제작 파이프라인 연구 - 국내 소규모 3D애니메이션 제작을 중심으로 -)

  • Yang, sung-su
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.198-202
    • /
    • 2008
  • Manufacturing process of large-scale 3D computer animation is becoming sophistication, ramification because of development of manufacturing technique and extravagant budget. Form of manufacturing pipeline has been variously changed to production type, manufacturing scale, manufacturing form. But it is time that renewed discussion is needed because change and development for the organization is insufficient in small manufacturing company. The project aims to try to help understanding for manufacturing pipeline of internal small-scale 3D animation and to find a plan of organization for internal small-scale production of the real situation. Organization model and methodology of manufacturing pipeline of small manufacturing company is not absolute because it is enough possible to be changed to inclination of the project and its environment. People must fully understand the purpose for organization of manufacturing pipeline of 3D computer animation and it must be organized to the situation for small-scale production so that every worker in production can share the information perfectly.

  • PDF

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

Deformation mechanisms of shallow-buried pipelines during road widening: Field and numerical investigation

  • Long Chen;Chenlei Xie;Zi Ye;Yonghui Chen;Zhewei Chai;Yun Li
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.15-28
    • /
    • 2024
  • The rapid development of the economy has compelled the widen of highways, and the main challenge of this undertaking lies in the uneven settlement of road embankments. Through field and numerical experiments, this study explores the deformation mechanism of shallow buried pipelines due to road widening. The utilization of Plaxis3D software, which is adapt at simulating complex engineering geological conditions, enables the simulation of the settlement of both the central and right-side road embankments. Comparing with other numerical software such as ABAQUS and COMSOL, Plaxis provided more constitutive models including HS, HSS and Hoek-Brown model. The work concludes that the uneven settlement of road cross-sections is positively correlated with the horizontal distance from the pipeline, with a maximum settlement of 73 mm observed after construction. Furthermore, based on the Winkler's assumption, theoretical settlement and stress calculation methods are established. Results indicate that the maximum difference between the calculated values of this formula and simulated values is 1.9% and 7%, respectively. Additionally, the study investigates the stress and settlement of the pipeline's top under different angles to understand its behavior under various conditions. It finds that with traffic loads applied to the new embankment, a lever effect occurs on the lower pipeline, with the fulcrum located within the central isolation zone, leading to a transition in curve type from "single peak and single valley" to "double peak and single valley." Moreover, the settlement of pipelines on both sides of the central isolation zone and the normal stress of the pipeline's top section are symmetrical.

Reliability Estimation of Buried Gas Pipelines in terms of Various Types of Random Variable Distribution

  • Lee Ouk Sub;Kim Dong Hyeok
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1280-1289
    • /
    • 2005
  • This paper presents the effects of corrosion environments of failure pressure model for buried pipelines on failure prediction by using a failure probability. The FORM (first order reliability method) is used in order to estimate the failure probability in the buried pipelines with corrosion defects. The effects of varying distribution types of random variables such as normal, lognormal and Weibull distributions on the failure probability of buried pipelines are systematically investigated. It is found that the failure probability for the MB31G model is larger than that for the B31G model. And the failure probability is estimated as the largest for the Weibull distribution and the smallest for the normal distribution. The effect of data scattering in corrosion environments on failure probability is also investigated and it is recognized that the scattering of wall thickness and yield strength of pipeline affects the failure probability significantly. The normalized margin is defined and estimated. Furthermore, the normalized margin is used to predict the failure probability using the fitting lines between failure probability and normalized margin.

Buckling response of offshore pipelines under combined tension and bending

  • Gong, Shun-Feng;Ni, Xing-Yue;Yuan, Lin;Jin, Wei-Liang
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.805-822
    • /
    • 2012
  • Offshore pipelines have to withstand combined actions of tension and bending during deepwater installation, which can possibly lead to elliptical buckle and even catastrophic failure of whole pipeline. A 2D theoretical model initially proposed by Kyriakides and his co-workers which carried out buckling response analysis of elastic-plastic tubes under various load combinations, is further applied to investigate buckling behavior of offshore pipelines under combined tension and bending. In association with practical pipe-laying circumstances, two different types of loadings, i.e., bent over a rigid surface in the presence of tension, and bent freely in the presence of tension, are taken into account in present study. In order to verify the accuracy of the theoretical model, numerical simulations are implemented using a 3D finite element model within the framework of ABAQUS. Excellent agreement between the results validates the effectiveness of this theoretical method. Then, this theoretical model is used to study the effects of some important factors such as load type, loading path, geometric parameters and material properties etc. on buckling behavior of the pipes. Based upon parametric studies, a few significant conclusions are drawn, which offer a theoretical reference for design and installation monitoring of deepwater pipelines.

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

Integrated Water Distribution Network System using the Mathematical Analysis Model and GIS (수리해석 모형과 GIS를 이용한 통합 용수배분 시스템)

  • Kwon, Jae-Seop;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.21-28
    • /
    • 2001
  • In this study, GNLP(GIS linked non-linear network analysis program) for pipeline system analysis has been developed. This GNLP gets the input data for pipeline analysis from existing GIS(geographic information system) data automatically, and has GUI(graphic user interface) for user. Non-Linear Method was used for hydraulic analysis of pipe network based on Hazen-Williams equation, and Microsoft Access of relational database management system(RDBMS) was used for the framework of database applied program. GNLP system environment program was improved so that a pipe network designer can input information data for hydraulic analysis of pipeline system more easily than that of existing models. Furthermore this model generate output such as pressure and water quantities in the form of a table and a chart, and also produces output data in Excel file. This model is also able to display data effectively for analysed data confirmation and query function which is the core of GIS program.

  • PDF