DOI QR코드

DOI QR Code

Deformation mechanisms of shallow-buried pipelines during road widening: Field and numerical investigation

  • Long Chen (Key Laboratory of Ministry of Education for Geomechanics and Embankment-Engineering, Hohai University) ;
  • Chenlei Xie (Key Laboratory of Ministry of Education for Geomechanics and Embankment-Engineering, Hohai University) ;
  • Zi Ye (Key Laboratory of Ministry of Education for Geomechanics and Embankment-Engineering, Hohai University) ;
  • Yonghui Chen (Key Laboratory of Ministry of Education for Geomechanics and Embankment-Engineering, Hohai University) ;
  • Zhewei Chai (Key Laboratory of Ministry of Education for Geomechanics and Embankment-Engineering, Hohai University) ;
  • Yun Li (Key Laboratory of Ministry of Education for Geomechanics and Embankment-Engineering, Hohai University)
  • Received : 2023.12.14
  • Accepted : 2024.06.19
  • Published : 2024.07.10

Abstract

The rapid development of the economy has compelled the widen of highways, and the main challenge of this undertaking lies in the uneven settlement of road embankments. Through field and numerical experiments, this study explores the deformation mechanism of shallow buried pipelines due to road widening. The utilization of Plaxis3D software, which is adapt at simulating complex engineering geological conditions, enables the simulation of the settlement of both the central and right-side road embankments. Comparing with other numerical software such as ABAQUS and COMSOL, Plaxis provided more constitutive models including HS, HSS and Hoek-Brown model. The work concludes that the uneven settlement of road cross-sections is positively correlated with the horizontal distance from the pipeline, with a maximum settlement of 73 mm observed after construction. Furthermore, based on the Winkler's assumption, theoretical settlement and stress calculation methods are established. Results indicate that the maximum difference between the calculated values of this formula and simulated values is 1.9% and 7%, respectively. Additionally, the study investigates the stress and settlement of the pipeline's top under different angles to understand its behavior under various conditions. It finds that with traffic loads applied to the new embankment, a lever effect occurs on the lower pipeline, with the fulcrum located within the central isolation zone, leading to a transition in curve type from "single peak and single valley" to "double peak and single valley." Moreover, the settlement of pipelines on both sides of the central isolation zone and the normal stress of the pipeline's top section are symmetrical.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support from by Basic Research Project of Nantong (Grant Nos. JC22022087), the Fundamental Research Funds for the Central Universities of China (Grant Nos. B210202032) and the National Natural Science Foundation of China (Grant Nos. 52178327 and 52308348). All the above support and assistance are greatly appreciated.

References

  1. Al-Shboul, K.F., Almasabha, G., Shehadeh, A. and Alshboul, O. (2023), "Exploring the efficacy of machine learning models for predicting soil radon exhalation rates", Stoch. Environ. Res. Risk A, 37, 4307-4321. https://doi.org/10.1007/s00477-023-02509-x.
  2. Almadi, A. I.M., Al Mamlook, R.E., Ullah, I., Alshboul, O., Bandara, N. and Shehadeh, A. (2023), "Vehicle collisions analysis on highways based on multi-user driving simulator and multinomial logistic regression model on US highways in Michigan", Int. J. Crashworthines, 28(6), 770-785. https://doi.org/10.1080/13588265.2022.2130608.
  3. Almasabha, G., Al-Shboul, K.F., Shehadeh, A. and Alshboul, O. (2023), "Machine learning-based models for predicting the shear strength of synthetic fiber reinforced concrete beams without stirrups", Structures, 52, 299-311. https://doi.org/10.1016/j.istruc.2023.03.170.
  4. Almasabha, G., Shehadeh, A., Alshboul, O. and Al Hattamleh, O. (2023), "Structural performance of buried reinforced concrete pipelines under deep embankment soil", Constr. Innov., https://doi.org/10.1108/CI-10-2021-0196.
  5. Alshboul, O., Al Mamlook, R.E., Shehadeh, A. and Munir, T. (2024), "Empirical exploration of predictive maintenance in concrete manufacturing: Harnessing machine learning for enhanced equipment reliability in construction project management", Comput. Ind. Eng., 190,110046. https://doi.org/10.1016/j.cie.2024.110046.
  6. Alshboul, O., Almasabha, G., Al-Shboul, K.F. and Shehadeh, A. (2023), "A comparative study of shear strength prediction models for SFRC deep beams without stirrups using machine learning algorithms", Structures, 55, 97-111. https://doi.org/10.1016/j.istruc.2023.06.026.
  7. Alshboul, O., Almasabha, G., Mamlook, R.E.A. and Saeed Almuflih, A. (2022), "Evaluating the impact of external support on green building construction cost: A hybrid mathematical and machine learning prediction approach", Buildings, 12(8), 1256; https://doi.org/10.3390/buildings12081256.
  8. Alshboul, O., Almasabha, G., Shehadeh, A. and Al-Shboul, K. (2024), "A comparative study of LightGBM, XGBoost, and GEP models in shear strength management of SFRC-SBWS", Structures, 61. https://doi.org/10.1016/j.istruc.2024.106009.
  9. Alshboul, O., Almasabha, G., Shehadeh, A., Al Hattamleh, O. and Almuflih, A.S. (2022), "Optimization of the structural performance of buried reinforced concrete pipelines in cohesionless soils", Material, 15(12), 4051. https://doi.org/10.3390/ma15124051.
  10. Alshboul, O., Almasabha, G., Shehadeh, A., Mamlook, R.E.A., Almuflih, A.S. and Almakayeel, N. (2022), "Machine learning-based model for predicting the shear strength of slender reinforced concrete beams without stirrups", Buildings, 12(8), 1166.; https://doi.org/10.3390/buildings12081166.
  11. Alshboul, O., Alzubaidi, M.A., Mamlook, R.E.A., Almasabha, G., Almuflih, A.S. and Shehadeh, A. (2022), "Forecasting liquidated damages via machine learning-based modified regression models for highway construction projects", Sustainability, 14(10), 5835. https://doi.org/10.3390/su14105835.
  12. Alshboul, O., Shehadeh, A. and Hamedat, O. (2021), "Development of integrated asset management model for highway facilities basedon risk evaluation", Int. J. Constr. Management, 23(8), 1355-1364. https://doi.org/10.1080/15623599.2021.1972204.
  13. Alshboul, O., Shehadeh, A., Al-Kasasbeh, M., Al Mamlook, R.E., Halalsheh, N. and Alkasasbeh, M. (2021), "Deep and machine learning approaches for forecasting the residual value of heavy construction equipment: a management decision support model", Eng. Constr. Archit. Management, 29(10), 4153-4176. . https://doi.org/10.1108/ECAM-08-2020-0614.
  14. Alshboul, O., Shehadeh, A., Mamlook, R.E.A., Almasabha, G., Almuflih, A.S. and Alghamdi, S.Y. (2022), "Prediction liquidated damages via ensemble machine learning model: Towards sustainable highway construction projects", Sustainability, 14(15), 159303. https://doi.org/10.3390/su14159303.
  15. Alshboul, O., Shehadeh, A., Tatari, O., Almasabha, G. and Saleh, E. (2021), "Governmental investment impacts on the construction sector considering the liquidity trap", J. Management Eng., 38(2), 1-16. https://doi.org/10.1061/(ASCE)ME.1943-5479.0001003.
  16. Alshboul, O., Shehadeh, A., Tatari, O., Almasabha, G. and Saleh, E. (2024), "Multiobjective and multivariable optimization for earthmoving equipment", J. Fac. Management, 22(1), 21-48. https://doi.org/10.1108/JFM-10-2021-0129.
  17. Barzegar, M., Wen, H., Mivehchi, M., Akin, I.D. and Adil, T. (2023), "Investigation of excessive settlement involving recycled asphalt pavement in highway embankment", Transp. Geotech., 40, 10091. https://doi.org/10.1016/j.trgeo.2023.100991.
  18. Bin, Z., Jiang, N., Zhou, C., Luo, X., Li, H., Chang, X. and Xia, Y. (2022), "Dynamic interaction of the pipe-soil subject to underground blasting excavation vibration in an urban soil-rock stratum", Tunn. Undeergr. Sp. Tech., 129, 104700. https://doi.org/10.1016/j.tust.2022.104700.
  19. Chen G., Wang, F.T., Li, D.Q. and Liu, Y. (2020), "Dyadic wavelet analysis of bender element signals in determining shear wave velocity", Can. Geotech. J., 57(12), 2027-2030. https://doi.org/10.1139/cgj-2019-0167.
  20. Chen L., Ghorbani, J., Zhang, C. and Kodikara, J. (2022), "Stress overshooting solution for soil plasticity models", Comput. Geotech., 152, 105008. https://doi.org/10.1016/j.compgeo.2022.105008.
  21. Dong X., Zhou F., Wang X.D., et al. (2023), "Experimental and application of HSS model parameters in foundation pit numerical analysis", Sci. Tech. Eng., 23, 7878-7885. (in Chinese)
  22. Du, Y.J., Jiang, N.J., Liu, S.Y. and Horpibulsuk, S. (2016), "Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue", Soils Found., 56(2), 301-314. https://doi.org/10.1016/j.sandf.2016.02.012.
  23. Halalsheh, N., Alshboul, O., Shehadeh, A., Al Mamlook, R.E., Al-Othman, A. and Tawalbeh, M. (2022), "Breakthrough curves prediction of selenite adsorption on chemically modified zeolite using boosted decision tree algorithms for water treatment applications", Water, 14(16), 2519. https://doi.org/10.3390/w14162519.
  24. Han, J., Oztoprak, S., Parsons, R.L. and Huang, J. (2007), "Numerical analysis of foundation columns to support widening of embankments", Comput. Geotech., 34(6), 435-448. https://doi.org/10.1016/j.compgeo.2007.01.006.
  25. Hardin, B.O. and Black, W.L. (1969), "Closure to "vibration modulus of normally consolidated clay"", J. Soil Mech. Found. Division, 95(6), 1531-1537. https://doi.org/10.1061/JSFEAQ.0001364.
  26. Jia, N., Chen, R., Chen, Y., Xu, L. and Yang, S. (2024), "Theoretical analysis and monitoring of Hangzhou Ningbo expressway expansion project", J. Geotech. Eng., 6, 755-760. (in Chinese).
  27. Kawa, M., Pula, W. and Truty, A. (2021), "Probabilistic analysis of the diaphragm wall using the hardening soil-small (HSS) model", Eng. Struct., 232, 111869. https://doi.org/10.1016/j.engstruct.2021.111869.
  28. Kouretzis, G. and Wu, J. (2021), "Recommendations for determining nonlinear Winkler spring parameters for buried steel pipe stress analysis applications", Comput. Geotech., 135, 104196. https://doi.org/10.1016/j.compgeo.2021.104196.
  29. Liu, L., Zhong, X. and Liao, S. (2023), "Accurate solutions of a thin rectangular plate deflection under large uniform loading", Appl. Math. Model., 123, 241-258. https://doi.org/10.1016/j.apm.2023.06.037.
  30. Liu, X., Li, Z., Zou, D., Sun, L., Yahya, K.E. and Liang, J. (2023), "Khailah Ebrahim Yahya, Jiaming Liang. Improving the prediction accuracy of small-strain shear modulus of granular soils through PSD: An investigation enabled by DEM and machine learning technique", Comput. Geotech., 157, 105355. https://doi.org/10.1016/j.compgeo.2023.105355.
  31. Luo, X., Lu, S., Shi, J., Li, X. and Zheng, J. (2015), "Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement", Eng. Fail. Anal., 48, 144-152. https://doi.org/10.1016/j.engfailanal.2014.11.014.
  32. Lv, G., Cui, W., Zhang, Q., Wu, S. and Wang, S. (2021), "Experimental study on embankment failure law and reinforcement technology for highway widening project over silt soils", J. Test. Eval., 49(6), 4248-4260. https://doi.org/10.1520/JTE20200429.
  33. Marcotte, B.A. and Fleming, I.R. (2019), "The role of undrained clay soil subgrade properties in controlling deformations in geomembranes", Geotext. Geomembranes, 47(3), 327-335. https://doi.org/10.1016/j.geotexmem.2019.02.001.
  34. Orynyak, I., Yaskovets, Z. and Mazuryk, H. (2019), "Novel numerical approach to analysis of axial stress accumulation in pipelines subjected to mine subsidence", J. Pipeline. Syst. Eng. Pract., 10(4). https://doi.org/10.1061/(ASCE)PS.1949-1204.0000405.
  35. Qin, Y., Zhu, F. and Xu, D. (2021), "Effect of the spatial variability of soil parameters on the deformation behavior of excavated slopes", Comput. Geotech., 136, 104246. https://doi.org/10.1016/j.compgeo.2021.104246.
  36. Shehadeh, A., Alshboul, O. and Almasabha, G. (2024), "Slope displacement detection in construction: An automated management algorithm for disaster prevention", Exp. Syst. Appl., 237, 121505. https://doi.org/10.1016/j.eswa.2023.121505.
  37. Shehadeh, A., Alshboul, O. and Hamedat. O. (2021), "A Gaussian mixture model evaluation of construction companies' business acceptance capabilities in performing construction and maintenance activities during COVID-19 pandemic", Int. J. Math. Eng. Management, 17(2), 112-122. https://doi.org/10.1080/17509653.2021.1991851.
  38. Shehadeh, A., Alshboul, O., Al-Shboul, K.F. and Tatari, O. (2024), "An expert system for highway construction: Multi-objective optimization using enhanced particle swarm for optimal equipment management", Exp. Syst. Appl., 249, 123621. https://doi.org/10.1016/j.eswa.2024.123621.
  39. Shi, H. (2019), Research on the Impact of Road Widening on Adjacent Buried Pipelines, Southeast University (in Chinese).
  40. Taborda, D.M.G., Pedro, A.M.G. and Pirrone, A.I. (2022), "A state parameter-dependent constitutive model for sands based on the Mohr-Coulomb failure criterion", Comput. Geotech., 148, 104811. https://doi.org/10.1016/j.compgeo.2022.104811.
  41. Wu, Y., You, X. and Zha, S. (2019), "Mechanical behavior analysis of buried polyethylene pipe under land subsidence", Eng. Fail. Anal., 108, 104351. https://doi.org/10.1016/j.engfailanal.2019.104351.
  42. Wu, M., Cai, G., Wang, C. and Liu, S. (2022), "Mapping constrained modulus differences in a highway widening project based on CPTU data and two-dimensional anisotropic geo-statistics", Transp. Geotech., 32, 100686. https://doi.org/10.1016/j.trgeo.2021.100686.
  43. Xie, D., Guan, F. and Ding, W.Q. (2017), "Determination and sensitivity analysis of model parameters for small strain hardened soil", J. Earthq. Eng., 39, 898-906.
  44. Yang, L., Han, C., Guo, C., Cao, D., Ni, P. and Wng, F. (2022), "An innovative solution for the dynamic response of buried pipelines in layered transversely isotropic soil under pavement structures", Comput. Geotech., 143, 104602. https://doi.org/10.1016/j.compgeo.2021.104602.
  45. Yasuhiko, O., Yusuke, K. and Hiroyasu, M. (2023), "Proposition of new yield criterion for green sand mold and its experimental validation by FEM stress analysis of triaxial compression test", J. Mater. Process. Tech., 318, 118020. https://doi.org/10.1016/j.jmatprotec.2023.118020.
  46. Ye, Z., Chen, Y., Kong, G., Chen, G. and Lin, M. (2023), "3D elastodynamic solutions to layered transversely isotropic soils considering the groundwater level", Comput. Geotech., 158, 105354. https://doi.org/10.1016/j.compgeo.2023.105354.
  47. Zhang, L. and Hu, L. (2022), "Numerical simulation of electroosmotic consolidation considering tempo-spatial variation of soil pH and soil parameters", Comput. Geotech., 147, 104802. https://doi.org/10.1016/j.compgeo.2022.104802.
  48. Zhang, Y.D. and Ron, C.W. (2023), "Effect of corrosion on buried pipe responses under external load: Experimental and numerical study", Tunn. Undergr Sp. Tech., 132, 104934. https://doi.org/10.1016/j.tust.2022.104934.
  49. Zhao, M., Liu, C., El-Korchi, T., Song, H. and Tao, M. (2019), "Performance of geogrid-reinforced and PTC pile-supported embankment in a highway widening project over soft soils", J. Geotech. Geoenviron., 145(11), 06019014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002157.
  50. Zheng, T., Zheng, L., Zhang, L., Tang, S. and Cui, Z.Y. (2021), "Safety assessment of buried natural gas pipelines with corrosion defects under the ground settlement", Eng. Fail. Anal., 129, 105663. https://doi.org/10.1016/j.engfailanal.2021.105663.
  51. Zhong, G. (2019), Research on the bearing characteristics of gas pipelines under widened roadbeds, Hunan University of Science and Technology. (in Chinese).
  52. Zhou, H., Wang, Y.Y., Stephens, M., Bergman, J. and Nanney, S. (2018), "Tensile and compressive strain capacity in the presence of corrosion anomalies", Proceedings of the 12th International Pipeline Conference.