• Title/Summary/Keyword: pipe system

Search Result 2,414, Processing Time 0.026 seconds

Research for KGS FS551 Amendment Using Abroad Code and Structure Simulation (해외규격과 구조해석을 이용한 KGS FS551 개정안 연구)

  • Kang, Byung-Ik;Kim, Byung-Gi;Kim, Byung-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.7-16
    • /
    • 2019
  • According to KGS FS551, the safety of an exposure pipe system should be calculated quantitatively by calculating the stress of exposed piping for thermal expansion. However, many pipe system designs and installation sites are not equipped for this. Therefore, KGS FS551 suggested the use of safe gas by presenting the recommended pipe shape. The shapes of various pipe systems have been derived. However, the recommended shape could not be an absolute evaluation standard. Furthermore, the ongoing debate over standards between a plumbing installer and an inspector is an obstacle to the efficient and safe use of gas. Therefore, the correct pipe system evaluation method is examined in this study, and the safety of the existing exposed pipe system is verified.

Hydartion Heat Control with Closed Loop Pipe Cooling System (냉각수 순환 형태의 파이프 쿨링 공법을 이용한 매스콘크리트 수화열 제어)

  • 박찬규;손상현;이승훈;장기욱;정재홍;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.403-408
    • /
    • 2001
  • In order to control hydration heat in mass concrete, pipe cooling method has been widely used. However, open pipe cooling system cannot be applied to the mass concrete structures when cooling water supply is difficult. To control hydration heat of high strength mass foundation, closed loop pipe cooling system was developed to solve the cooling water supply. This paper reports the performance result of hydration heat control with closed loop pipe cooling system.

  • PDF

The Reliable Controller Design for Magnetic Auto-Pipe Cutting Machine (자석식 자동 파이프 절단기를 위한 신뢰성 있는 제어기 개발)

  • 김국환;이명철;이순걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1019-1022
    • /
    • 2002
  • Pipe-cutting machines have been used in many fields. Recently, an automatic pipe-cutting machine that uses magnet has born developed. In this paper, a magnetic-type automatic pipe-cutting machine that attaches itself and performs unmanned cutting process is proposed. It is designed that there is a room at the bottom of its body to contain a magnet. And it uses magnetic force between the magnet and the pipe surface to prevent slip and to attach the machine to the pipe against gravity. Also the magnetic force is adjustable by changing the gap between the magnet and the pipe. This machine is, however, necessary to control cutting velocity for the elevation of work efficiency and the adjustable faculties. During pipe cutting process, the gravity acting on the pipe-cutting machine widely varies. That is, the cutting machine gets fast when moving from the top to the bottom of the pipe and slow when moving from the bottom to the top. Actually the system is kind of a non-linear system where the gravity is function of climbing angle of the cutting machine along the pipe. Especially jerking motion is critical. Therefore, authors design the non-linear controller that estimates the current position of the machine along the pipe and compensates the effect of gravity in this paper. It receives the feed back signal from the encoder.

  • PDF

Preliminary Field Test on Daylighting Performance of Perpendicular Light Pipe System (수직형 라이트파이프의 채광성능에 관한 예비평가)

  • Shin, Hae Mi;Park, Hoon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • The daylighting affects on the human biological cycles and physiological alterations. Daylighting is also an important element in visual comfort and it sometimes influences the quality of vision. Therefore the absence of natural light during the day brings contradictory result. To solve the problems of natural light lack and provide sufficient daylight in interior spaces, it might be necessary to apply some daylighting systems. One of these systems, light pipe system, which is simple, cheep and easily constructed, is very useful to apply for small buildings. The light pipe is simple means of directing daylighting (diffuse and direct lighting)into interior space. In order to application of light pipe system in Korea, it is necessary to optical data of light pipe system. This study aims to evaluate preliminary experiment of the daylighting environment of light pipe system. Light pipe system, that aspect ratio is 1:2(diameter and length), was installed in a windowless mock-up with $27m^2$. The mock-up model was constructed as a prototype of Korean office surface. Illuminance was measured with a Topcon IM-5 Luxmeter to evaluate the distribution of the illuminance on a floor. The indoor and outdoor illuminance and the internal/external illuminance ratio are compared to discuss with in the graphs. Luminance was measured with Radiant imaging Promertric 1400 that is digital photometer to evaluate the distribution of luminance on interior surface. The contrast of luminance is discussed with table and graphs.

A Study on the Status and Improvement of Double Pipe System in Apartment Buildings (공동주택 이중관 공법의 현안 분석 및 개선 연구)

  • Kim, Myoung-Seok;Kim, Youngil;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • Double pipe system in which PB pipe is inserted in CD pipe buried in the concrete slab is widely used for cold and hot water supplies in apartment housings. The system, however becomes complicated and the overlaying pipes in the concrete slab weaken the compressive strength of the slab. Also, insufficient insulation increases energy loss. In this work, the problems of the double pipe system are studied and plans A, B, and C are suggested for improvement. In terms of compressive strength of the concrete slab, plan A(total pipe length 73 m) was the weakest and plan B(2 m) was the strongest. Energy loss of plan A was the largest with 558.9 W and plan B was the lowest with 220.7 W. However, considering the combined effect of strength and heat loss, plan C becomes the best choice, which retains the advantage of the double pipe system.

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

Crack Effects on Dynamic Stability of Elastically Restrained Valve-pipe System (탄성 지지된 밸브 배관계의 안정성에 미치는 크랙의 영향)

  • Hur, Kwan-Do;Son, In-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2011
  • The dynamic instability and natural frequency of elastically restrained pipe conveying fluid with the attached mass and crack are investigated. The pipe system with a crack is modeled by using extended Hamilton's Principle with consideration of bending energy. The crack on the pipe system is represented by a local flexibility matrix and two undamaged beam segments are connected. In this paper, the influence of attached mass, its position and crack on the dynamic stability of a elastically restrained pipe system is presented. Also, the critical flow velocity for the flutter and divergence due to the variation in the position and stiffness of supported spring is studied. Finally, the critical flow velocities and stability maps of the pipe conveying fluid with the attached mass are obtained by the changing parameters.

Stability Analysis of a Rotating Cantilever Pipe Conveying Fluid (유체유동 회전 외팔 파이프의 안정성 해석)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.701-707
    • /
    • 2007
  • In this paper the vibration system is composed of a rotating cantilever pipe conveying fluid. The equation of motion is derived by using the Lagrange's equation. Generally, the system of pipe conveying fluid becomes unstable by flutter. Therefore, the influence of the rotating angular velocity, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. The influence of mass ratio, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the stability of a cantilever pipe are analytically clarified. The critical fluid velocity ($u_{cr}$) is proportional to the angular velocity of the cantilever pipe. In this paper Flutter(instability) is always occurred in the second mode of the system.

Forced Vibration of Elastically Restrained Valve-pipe System (탄성지지된 밸브 배관계의 강제진동 특성)

  • Son, In-Soo;Hur, Kwan-Do
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.679-680
    • /
    • 2011
  • The Forced vibration characteristics of elastically restrained pipe conveying fluid with the attached mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effect of attached mass and spring constant on forced vibration of pipe system is studied. Also, the critical flow velocities and stability maps of the valve-pipe system are obtained as each parameters.

  • PDF

The Influence of Moving Masses on Dynamic Behavior of a Cantilever Pipe Subuected to Uniformly Distributed Follower Forces (이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Hyun-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.80-85
    • /
    • 2002
  • A conveying fluid cantilever pipe system subjected to an uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses. and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical mettled. The uniformly distributed tangential follower force is considered within its ciritical value of a cantilever pipe without moving masses, and three constant velocities and three constant distance between two moving masses are also chosen. When the moving masses exist on pipe, As the velocity of the moving mass and distributed tangental force increases, the deflection of cantilever pipe conveying fluid is decreased, respectively. Increasing of the velocity of fluid flow make the amplitude of cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip displacement of pipe is influenced by the potential energy of cantilever pipe.

  • PDF