• Title/Summary/Keyword: pinus

Search Result 3,181, Processing Time 0.029 seconds

Vegetation Structure and Growth Environmet of Diabelia spathulata (Siebold & Zucc.) Landrein Population in Mt. Cheonseong, Korea (천성산 주걱댕강나무 개체군의 식생구조와 생육환경)

  • Yi, Myung Hoon;Yoo, Sung Tae;Jang, Jeong Gul
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.346-361
    • /
    • 2021
  • The range of D. spathulata identified in this survey was between N 35° 24' 58" ~ N 35° 26' 35", E 129° 05' 43" ~ E 129° 07' 04". It is located at an altitude of 98~592 m. The soil pH was strongly acidic in the range of 4.2~4.9, with a canopy openness of 18.56% and a chlorophyll index of 36.74 ± 2.80. As a result of the TWINSPAN analysis, 20 plots of 100 m2 each were divided in 4 communities: Pinus densiflora community, Quercus monglica-Diabelia spathulata community, Quercus serrata-Diabelia spathulata community and Carpinus tschonoskii subassociation. The result of species diversity was 0.7615, and evenness and dominance were found to be 0.6077 and 0.3923, respectively. The height of D. spathulata is up to 3.4 m, and the average height is 1.1 m, with most of the species distributed as shrubbery and herbaceous. The average population density of the 20 plots was 1.635 individuals/m2, the height range of flowering was 1.0 ~ 1.8 (aver. 1.39 m) and the rate of flowering was 27.37%. It's propagation pattern was mainly formed by extending the rhizome to the side, creating a colony of ground stems.

Location Environment and Vegetation Structure of the Aconitum austrokoreense Habitat (세뿔투구꽃 서식지의 입지환경 및 식생구조)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • Owing to the lack of consistent research on endangered plant species in Korea, there are insufficient data to preservespecies and expand habitats. This study analyzed the preferred habitat and threats to the survival of Aconitum austrokoreense, found on Baekwun Mountain in Gurye-gun, Gwangyang-si, Jeollanam-do Province, and classified as a level two endangered wild plant by the Ministry of Environment, by investigating major environmental factors such as climate, location, soil, and stand structure. By examining five selected sites inhabited by Aconitum austrokoreense on BaekwunMountain, this study found that the habitat had an altitude of 420 to 675 m above sea level and showed a northeast tendency, spreading over a range of inclination angles between 15° and 37°. The average number of plants across the five sites was 156. Site 4 (550 m) had the highest density of 372 plants, with an average height of 0.6 m. The average soil moisture and relative light intensity were 20.48% and 7.34%, respectively. Layer soil was presumed to be sandy loam, characterized by high sand content and good drainage. The habitat had average soil pH of 5.2, average organic matter of 16.46%, average nitrogen of 0.86%, average available phosphate of 11.86 mg/kg, average electrical conductivity of 0.44 dS/m, and average cation exchange capacity of 37.04 cmolc/kg. The total carbon in soil averaged 10.68%. From the analysis of the vegetation structure of sites inhabited by Aconitum austrokoreense, the dominant populations were Pinus koraiensis and Lindera erythrocarpa in Site 1, Magnolia obovata and Carpinus laxiflora in Site 2, Zelkova serrate and Quercus variabilis in Site 3, Staphylea bumalda and Lindera erythrocarpa in Site 4, and Morus bombycis,Styrax japonicus, and Carpinus laxiflora in Site 5. With most habitats located near trails and sap collection sites of Acer pictum, the species were exposed to artificial damage and interference threats.

Soil Physical and Chemical Properties of Kaolinite Opencast Mines and Adjacent Red Pine Forests in Sancheong-gun (산청군 고령토(백토) 노천 광산 채굴지와 인접 소나무 임분의 토양 물리·화학적 성질)

  • Kim, Kyung Tae;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.382-389
    • /
    • 2020
  • Soil properties in opencast mines are a key factor in reclamation (revegetation) of mining areas. In this study we determined the soil physical and chemical properties of kaolinite tailings, reclaimed areas, and adjacent natural red pine (Pinus densiflora S. et Z.) forests in kaolinite opencast mines in Sancheong-gun, Gyeongsangnam-do. Six sites were chosen for collection of soil samples to determine soil physical and chemical properties at a soil depth of 10 cm. Soil bulk density was significantly higher (P < 0.05) in the kaolinite tailings (1.51 g·cm-3) than in the reclaimed areas (1.19 g·cm-3) and red pine forests (0.93 g·cm-3), whereas air phase in the kaolinite tailings (14.2%) was significantly lower than in the red pine forests (32.6%). Clay content in the red pine forests was significantly higher than in the reclaimed areas (18.7%) or kaolinite tailings (14.8%), whereas soil structural stability index was significantly lower in the reclaimed areas (1.61%) and kaolinite tailings (0.87%) than in the red pine forests (7.75%). Soil pH was significantly higher in the kaolinite tailings (pH 6.68) and reclaimed areas (pH 6.27) than in the red pine forests (pH 5.31). Soil organic carbon and total nitrogen were significantly higher in the red pine forests (C: 36.03 mg·g-1; N: 2.08 mg·g-1) than in the reclaimed areas (C: 5.00 mg·g-1; N: 0.31 mg·g-1) than in the kaolinite tailings (C: 2.12 mg·g-1; N: 0.07 mg g-1). The amount of available phosphorus was not significantly different among the three treatments. The concentration of exchangeable potassium was significantly lower in the kaolinite tailings (0.08 cmolc·kg-1) than in the reclaimed areas (0.21 cmolc·kg-1) and red pine forests (0.30 cmolc·kg-1). These results indicate that, because of high soil bulk density and low soil organic carbon, total nitrogen, available phosphorus, and exchangeable potassium in kaolinite tailings and reclaimed mining areas, soil nutrient management is needed in order to reclaim the vegetation in these type of areas.

Carbon and Nitrogen Inputs by Litterfall of Chamaecyparis obtusa Planted in Pine Wilt Disease-disturbed Forests (소나무재선충병 피해지에 식재된 편백의 낙엽·낙지에 의한 탄소 및 질소 유입량)

  • Kang, Hyeon Cheol;Baek, Gyeongwon;Choi, Byeonggil;Ha, Jiseok;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, carbon (C) and nitrogen (N) inputs by the litterfall of Japanese cypress (Chamaecyparis obtusa Endlicher) planted in pine wilt disease-disturbed forests were determined. The study sites were located in Sacheon-si, Gyeongsangnam-do. Eight plots under two regeneration sites (DR: four plots of C. obtusa planted under slightly disturbed Pinus thunbergii stands; CR: four plots of C. obtusa planted following the clear-cutting of severely disturbed pine stands) were established to collect litterfall from December 2018 to December 2019. The growth of diameter at breast height (DBH) was significantly higher in the CR treatment (12.10 cm) than that in the DR treatment (9.42 cm). C and N concentrations and the C/N ratio in C. obtusa leaf litter did not differ significantly between the two regeneration treatments, but the C/N ratio was significantly lower in the leaf litter collected in October (93) relative to that collected in December (143). The C concentration of litterfall components was significantly higher in C. obtusa leaf litter and in P. thunbergii needle litter than in broadleaved and miscellaneous litter, whereas the N concentration in broadleaved and miscellaneous litter was significantly higher than that in the leaf litter of C. obtusa and in branch litter. Thus, the C/N ratio was significantly higher in C. obtusa leaf litter and branch litter compared with that in miscellaneous and broadleaved litter. Respective C and N inputs by leaf litter were 773 kg C ha-1 yr-1 and 6.95 kg N ha-1 yr-1 for the CR treatments, and 78 kg C ha-1 yr-1 and 0.70 kg N ha-1 yr-1 for the DR treatment. Total C and N inputs were higher for the DR treatment (3,765 kg C ha-1 yr-1 and 47.6 kg N ha-1 yr-1, respectively) than for the CR treatment (1,290 kg C ha-1 yr-1 and 17.2 kg N ha-1 yr-1, respectively). These results indicate that, for C. obtusa, the DBH growth in the CR treatment was superior to that in the DR treatment, but the C and N inputs by litterfall were considerably reduced in CR treatments.

Subalpine Vegetation Structure Characteristics and Flora of Mt. Seoraksan National Park (설악산국립공원 아고산대 식생구조 특성 및 식물상)

  • Lee, Sang-Cheol;Kang, Hyun-Mi;Kim, Dong-Hyo;Kim, Young-Sun;Kim, Jeong-Ho;Kim, Ji-Suk;Park, Bum-Jin;Park, Seok-Gon;Eum, Jeong-Hee;Oh, Hyun-Kyung;Lee, Soo-Dong;Lee, Ho-Young;Choi, Yoon-Ho;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.118-138
    • /
    • 2022
  • This study was conducted to identify the vegetation structure of major vegetation by region and elevation in the subalpine zone of Seoraksan National Park and prepare an inventory of flora. We reviewed the results of the previous subalpine studies and, through a preliminary survey, determined that the first appearance point of subalpine vegetation was about 800 m based on the south. Then we conducted a site survey by installing a total of 77 plots, including 12 plots on the northern Baekdamsa-Madeungnyeong trail (BD), 13 plots on the west Hangyeryeong-Kkeutcheong trail (HG), 13 plots on the east side of Sinheungsa-Socheongbong trail (SA), and 39 plots in the southern Osaek-Kkeutcheong, Osaek-Daecheongbong trail (OS), in an interval of 50 m above sea level. The analysis classified 7 communities, including Qercus mongolica-Abies holophylla-Acer pseudosieboldianumcommunity, Q. mongolica-Tilia amurensiscommunity, Q. mongolica-Pinus koraiensiscommunity, Q. mongolica-A. pseudosieboldianumcommunity, Betula ermanii-A. nephrolepiscommunity, P. koraiensis-A. nephrolepiscommunity, and mixed deciduous broad-leaf tree community according to the species composition based on the appearance of the major subalpine plants such as Quercus mongolica, Betula ermanii, and Abies nephrolepis, region, and elevation. 10.68±2.98 species appeared per plot (100 m2), and 110.87±63.89 individuals were identified. The species diversity analysis showed that the subalpine vegetation community of Seoraksan National Park was a mixed forest in which various species appeared as important species. Although there was a difference in the initial elevation for the appearance of major subalpine plants by region, they were distributed intensively in the elevation range of 1,100 to 1,300 m. In the Seoraksan National Park, 322 taxa, 83 families, 193 genera, 196 species, 1 subspecies, 26 varieties, and 4 forms of vascular plants were identified. One taxon of Trientalis europaeavar.arcticawas identified as the protected species. The endemic plants were 19 taxa, and 58 taxa were identified as subalpine plants.

The Economic Impact of the Korean Port Industry on the National Economy : from the Viewpoint of Macroeconomics (한국항만산업이 국가경제에 미치는 영향에 관한 분석 - 거시경제의 관점에서 -)

  • Moon, S.H.
    • Journal of Korean Port Research
    • /
    • v.6 no.2
    • /
    • pp.65-92
    • /
    • 1992
  • The Korean central government has not appreciate the full extent of the impact of seaports on the national economy. As a consequence port investment has not been given sufficient priority and capacity has failed to keep pace with demand. The principal reason for this failure is the fact that the linkages (or relationships) of the port transport industry with other sectors have not been quantified and fully appreciated. To overcome this dificiency this paper developed a port input-output model to determine the economic impact of the port industry on the national economy. This impact study was conducted by analysing the impact of the Korean port industry upon the national economy from the macroeconomic viewpoint, and identifying the spreading effects of port investments upon the nation's economy. The analysis of the economic impact of the port industry suggests that its contribution to the Korean economy is substantial. What the model shows is, in quantifiable terms, there are the strong economic linkages between the port industry and the other sectors of the national economy. The contribution of the port industry to the Korean economy was summarised in the Conclusion section.

  • PDF

Vegetation Characteristics in Cheongwansan Provincial Park (천관산도립공원의 식생 특성)

  • Ji-Woo Kang;Hyun-Mi Kang
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.2
    • /
    • pp.163-178
    • /
    • 2023
  • This study was conducted to understand the vegetation characteristics of Cheongwansan Provincial Park through the analysis of the plant community structure and to build data necessary for the continuous management and protection of Cheongwansan Provincial Park. The TWINSPAN and DCS analyses of the plant community structure of 63 survey districts in Cheongwansan Provincial Park identified eight colonies, including Cryptomeria japonica Community (I), Chamaecyparis obtusa-Pinus densiflora Commuity (II), P. rigida-P. densiflora Community (III), mixed coniferous and broad-leaved Community (IV), P. densiflora Community (V), deciduous broad-leaved such as Quercus spp. Community (VI), Q. mongolica-P. densiflora Community (VII) and P. thunbergii Community (VIII). The colonies can be grouped into afforestation communities (I, II, and III) dominated by C. obtusa, C. japonica, and P. rigida and natural forest communities (IV, V, VI, VII, and VIII) dominated by native species. Although Cheongwansan Provincial Park is a provincial park area that can represent natural ecosystems and landscapes, the rate of artificial forests is higher than that of other provincial parks. Most of the artificial forest communities are expected to maintain their current state, but since native species such as Machilus thunbergii, Neolitsea sericea, and deciduous broad-leaved, which are warm-temperate trees introduced through surrounding natural forests, appear in the lower layer, it is determined that it is possible to induce succession to natural forests suitable for climatic characteristics through management, and monitoring for continuous management is also necessary. Deciduous broad-leaved such as Quercus spp. Copete with P. densiflora in most natural forest communities. The vegetation series in the warm-temperate region of Korea appears to be in the early stages, and it is believed that the succession to Q. serrata or Q. mongolica, which appears next to coniferous in the series, is in progress. However, M. thunbergii and N. sericea, which appear in the middle stage of the succession in the warm-temperate region, have started to appear, and since Jangheung-gun belongs to the warm-temperate region considering the climate characteristics, the eventual succession to the warm-temperate forests dominated by evergreen broad-leaved is also expected. In this study, we built vegetation data from Cheongwansan Provincial Park, which lacks research on vegetation. However, since vegetation research in Cheongwansan Provincial Park is still insufficient, it is believed that further research should be continuously conducted to establish forest vegetation data and observe vegetation changes.

Analysis on the Relation between the Morphological Physical and Chemical Properties of Forest Soils and the Growth of the Pinus koraiensis Sieb. et Zucc. and Larix leptolepis Gord by Quantification (수량화(數量化)에 의(依)한 우리나라 삼림토양(森林土壤)의 형태학적(形態学的) 및 이화학적(理化学的) 성질(性質)과 잣나무 및 낙엽송(落葉松)의 생장(生長) 상관분석(相關分析))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.1-26
    • /
    • 1981
  • 1. Aiming at supply of basic informations on tree species siting and forest fertilization by understanding of soil properties that are demanded by each tree species through studies of forest soil's morphological, physical and chemical properties in relation to tree growth in our country, the necessary data have been collected in the last 10 years, are quantified according to quantification theory and are analyzed in sccordance with multi-variate analysis. 2. Test species, japanese larch (Larix leptolepis Gord) and the Korean white pine, (pinus koraiensis S et Z.) are plantable in extensive areas from mid to north in the temperate forest zone and are the two most recommended reforestation tree species in Korea. However, their respective site demands are little known and they have been in confusion or considered demanding the same site during reforestation. When the Korean white pine is planted in larch sites, it has shown relatively good growth, but, when Japanese larch is planted in Korean white pine site it can be hardly said that the Japanese Larch growth is good. To understand on such a difference soil factors have been studied so as to see how th soil's morphological, physical and chemical factors affect tree growth helped with the electronic computer. 3. All the stands examined are man-made mature forests. From 294 Japanese larch plots and 259 Korean white pine plots dominant trees are cut as samples and through stem analysis site index is determined. For each site index soil profiles are made in the related forest-land for analysis. Soil samples are taken from each profile horizon and forest-land productivity classification tables are worked out through physical and chemical analyses of the soil samples for each tree species for the study of relationships between physical, chemical and the combined physical/properties of soil and tree growth. 4. In the study of relationships between physical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the decreasing order of weight deposit form, soil depth, soil moisture, altitude, relief, soil type, depth a A-horizon, soil consistency, content of organic matter, soil texture, bed rock, gravel content, aspect and slope. For the Korean white pine the influencing factors' order is soil type, soil consistency, bed rock, aspect, depth of A-horizon, soil moisture, altitude, relief, deposit form, soil depth, soil texture, gravel content and slope. 5. In the study of relationships between chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of base saturation, organic matter, CaO, C/N ratio, effective $P_2O_5$, PH, exchangeable, $K_2O$, T-N, MgO, CEC, Total Base and Na. For the Korean white pine the influencing factors' order is effective $P_2O_5$, Total Base, T-N, Na, C/N ratio, PH, CaO, base saturation, organic matter, exchangeable $K_2O$, CEC and MgO. 6. In the study of relationships between the combined physical and chemical properties of soil and tree growth it is found out that Japanese larch growth is influenced by the following factors in the order of soil depth, deposit form, soil moisture, PH, relief, soil type altitude, T-N, soil consistency, effective $P_2O_5$, soil texture, depth of A-horizon, Total Base, exchangeable $K_2O$ and base saturation. For the Korean white pine the influencing factors' order is soil type, soil consistency, aspect, effective $P_2O_5$, depth of A-horizon, exchangeable $K_2O$, soil moisture, Total Base, altitude, soil depth, base saturation, relief, T-N, C/N ratio and deposit form. 7. In the multiple correlation of forest soil's physical properties larch's correlation coefficient for Japanese Larch is 0.9272 and for Korean white pine, 0.8996. With chemical properties larch has 0.7474 and Korean white pine has 0.7365. So, the soil's physical properties are found out more closely related with tree growth than chemical properties. However, this seems due to inadequate expression of soil's chemical factors and it is proved that the chemical properities are not less important than the physical properties. In the multiple correlation of the combined physical and chemical properties consisting of important morphological and physical factors as well as chemical factors of forest soils larch's multiple correlation coefficient is found out to be 0.9434 and for Korean white pine it is 0.9103 leading to the highest correlation. 8. As shown in the partial correlation coefficients Japanese larch needs deeper soil depth than Korean white pine and in the deposit form of colluvial and creeping soils are demanded by the larch. Moderately moist to not moist should be soil moisture and PH should be from 5.5 to 6.1 for the larch. Demands of T-N, soil texture and soil nutrients are higher for the larch than the Korean white pine. Thus, soil depth, deposit form, relief, soil moisture, PH, N, altitude and soil texture are good indicators for species sitings with larch and the Korean white pine while soil type and soil consistency are indicative only limitedly of species sitings due to their wide variations as plantation environments. For the larch siting soil depth, deposit form, relief, soil moisture, pH, soil type, N and soil texture are indicators of good growth and for the Korean white pine they are soil type, soil consistency, effective $P_2O_5$ and exchangeable $K_2O$. In soil nutrients larch has been found out demanding more than the Korean white pine except $K_2O$, which is demanded more by the Korean white pine than Japanese larch generally. 9. Physical properties of soil has been known as affecting tree growth to the greatest extent so far. However, as a result of this study it is proved through computer analysis that chemical properties of soil are not less important factors for tree growth than chemical properties and site demands for the Japanese larch and the Korean white pine that have been uncertain so far could be clarified.

  • PDF

Studies on the Internal Changes and Germinability during the Period of Seed Maturation of Pinus koraiensis Sieb. et Zucc. (잣나무 종자(種字) 성숙과정(成熟過程)에 있어서의 내적변화(內的變化)와 발아력(發芽力)에 대(對)한 연구(硏究))

  • Min, Kyung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.21 no.1
    • /
    • pp.1-34
    • /
    • 1974
  • The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with $80-91{\mu}$ in length, and has cuticlar exine and cellulose intine. 4) Pollen germinate in 68 hours at $25^{\circ}C$ with distilled water of pH 6.0, 2% sugar and 0.8% agar. 2. Female flowers 1) Ovuliferous scales grow rapidly in late April, and differentiation of ovules begins early in May. Embryo-sac-mother cells produce pollen tetrads through meiosis in the middle of May, and flower in late May. 2) The pollinated female flowers show repeated divisions of embryo-sac nucleus, and a great number of free nuclei form a mass for overwintering. Morphogenesis of isolation in the mass structure takes place from the middle of March, and that forms albuminous bodies of aivealus in early May. 3. Formation of pollinators and embryos. 1) Archegonia produce archegonial initial cells in the middle and late April, and pollinators are produced in the late April and late in early May. 2) After pollination, Oespore nuclei are seen to divide in the late May forming a layer of suspensor from the diaphragm in early June and in the middle of June. Thus this happens to show 4 pro-embryos. The organ of embryos begins to differentiate 1 pro-embryo and reachs perfect maturation in late August. 4. The growth of cones 1) In the year of flowering, strobiles grow during the period from the middle of June to the middle of July, and do not grow after the middle of August. Strobiles grow 1.6 times more in length 3.3 times short in diameter and about 22 times more weight than those of female flower in the year of flowering. 2) The cones at the adult stage grow 7 times longer in diameter, 12-15 times shorter diameter than those of strobiles after flowering. 3) Cone has 96-133 scales with the ratio of scale to be 69-80% and the length of cone is 11-13cm. Diameter is 5-8cm with 160-190g weight, and the seed number of it is 90-150 having empty seed ratio of 8-15%. 5. Formation of seed-coats 1) The layers of outer seed-coat become most for the width of $703{\mu}$ in the middle of July. At the adult stage of seed, it becomes $550-580{\mu}$ in size by decreasing moisture content. Then a horny and the cortical tissue of outer coats become differentiated. 2) The outer seed-coat of mature seeds forms epidermal cells of 3-4 layers and the stone cells of 16-21 layers. The interior part of it becomes parenchyma layer of 1 or 2 rows. 3) Inner seed-coat is formed 2 months earlier than the outer seed-coat in the middle of May, having the most width of inner seed-coat $667{\mu}$. At the adult stage it loses to $80-90{\mu}$. 6. Change in moisture content After pollination moisture content becomes gradually increased at the top in the early June and becomes markedly decreased in the middle of August. At the adult stage it shows 43~48% in cone, 23~25% in the outer seed-coat, 32~37% in the inner seed-coat, 23~26% in the inner seed-coat and endosperm and embryo, 21~24% in the embryo and endosperm, 36~40% in the embryos. 7. The content compositions of seed 1) Fat contents become gradually increased after the early May, at the adult stage it occupies 65~85% more fat than walnut and palm. Embryo includes 78.8% fat, and 57.0% fat in endosperm. 2) Sugar content after pollination becomes greatly increased as in the case of reducing sugar, while non-reducing sugar becomes increased in the early June. 3) Crude protein content becomes gradually increased after the early May, and at the adult stage it becomes 48.8%. Endosperm is made up with more protein than embryo. 8. The test of germination The collected optimum period of Pinus koraiensis seeds at an adequate maturity was collected in the early September, and used for the germination test of reduction-method and embryo culture. Seeds were taken at the interval of 7 days from the middle of July to the middle of September for the germination test at germination apparatus.

  • PDF

Characristics and Management Plans of Myeongwoldae and Myeongwol Village Groves Located in, Jeju (제주 팽림월대(彭林月臺)의 경관특성 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Chol, Yung-Hyun;Kahng, Byung-Seon;Kim, Young-Suk
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.68-81
    • /
    • 2014
  • This study was conducted to identify the spacialty, to illuminate the existence and values of Myeongwoldae(明月臺) and Forest Myeongwol, and to suggest the sustainable usage, preservation and management plans with the purpose of ecological and cultural landscaping characteristic and value identification. The result of the study is as follows. Castle Myeongwol and Port Myeongwol shows the status of Hallim-eup Myeongwol District which is the administrative center of western Jeju as well as is the fortress. Building Wolgyejeongsa and School Woohakdang, the head temple of education and culture, located in Myeongwol District represents the spaciality of Myeonwol-ri which was the center of education. Stand Myeongwol is one of the most representative Confucian cultural landscapes in Jeju Island and the field of communion with nature where scholars enjoy poetries, nature, changgi(Korean chess), and go in the Joseon Dynasty period. It was found that the current relics of Myeongwoldae was recovered through the maintenance project conducted by Youth Group Myeongwol composed with Hongjong-si(洪鍾時) as the center during the Japanese colonial era in 1931. It seems that the stonework of Myeongwoldae composed of three levels in the order of square, octagon, and circle based on the heaven-man unity theory of Confucianism and the octagon in the middle is the messenger of Cheonwonjibang(天圓地方), in other words, between the square-shaped earth and the circle-shaped sky. It is assumed that both Grand Bridge Myeongwol and Bridge Myeongwol were constructed as arched bridges in early days. Bridge Myeongwol is the only arched bridge remaining in Jeju Island now, which has the modern cultural heritage value. In Forest Myeongwol, 97 taxa of plants were confirmed and in accordance with 'Taxonomic Group and Class Criteria of Floristic Specific Plants', eight taxa were found; Arachniodes aristata of FD IV and Ilex cornuta, Piper kadsura, Litsea japonica, Melia azedarach, Xylosma congestum, Richosanthes kirilowii var. japonica, Dichondra repens, Viburnum odoratissimum var. awabuki of FD III. Otherwise, 14 taxa of naturalized plants including Apium leptophylihum which is imported to Jeju Island only were confirmed. In Forest Myeongwol, 77 trees including 41 Celtis sinensis, 30 Aphananthe aspera, two Wylosma congestum, a Pinus densiflora, a Camellia japonica, a Melia azedarach, and an Ilex cornuta form a colony. Based on the researched data, the preservation and plans of Myeongwoldae and Forest Myeongwol is suggested as follows. Myeongwoldae, Bridge Myeongwol, and Forest Myeongwol should be managed as one integrated division. Bridge Myeongwol, an arched bridge which is hard to be found in Jeju Island is a high-standard stonework requiring long-term preservation plans. Otherwise, Grand Bridge Myeongwol that is exposed to accident risks because of deterioration and needs safety diagnosis requires measures according to the result of precise safety diagnosis. It is desirable to restore it to a two-sluice arched bridge as its initial shape and to preserve and use it as a representative local landmark with Stand Myeongwol. In addition, considering the topophsis based on the analysis result, the current name of Jeju Special Self-Governing Province Monument No. 19 'Myoengwol Hackberry Colony' should change to 'Myeongwol Hackberry-Muku Tree Colony'. In addition, the serial number system which is composed without distinction of hackberry and muku tree should be improved and the regular monitoring of big and old trees, specific plants, and naturalized species is required.