• Title/Summary/Keyword: pinning field

Search Result 88, Processing Time 0.027 seconds

Flux Pinning Enhancement in $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_{2}Cu_{3}O_y$ Oxides by Zone Melt Growth Process

  • Kim So-Jung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.251-256
    • /
    • 2005
  • Directionally melt-textured high $T_c\;(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_{2}Cu_{3}O_y$ [(YNS)-123] superconductor was systematically investigated by the zone melt growth process in air. A sample prepared by this method showed well-textured microstructure, and $(Y_{0.5}Nd_{0.25}Sm_{0.25})_{2}BaCuO_5$[(YNS)211] inclusions were uniformly dispersed in large $(Y_{0.5}Nd_{0.25}Sm_{0.25})Ba_{2}Cu_{3}O_y$ [(YNS)123] matrix. High irreversibility field and magnetization hysteresis loop of the zone melt-textured (YNS)-123 sample exhibited the enhanced flux pinning, compared with $YBa_{2}Cu_{3}O_y$ (Y-123) sample without RE(rare earth). Critical current density of (YNS)-123 sample was $2.5{\times}10^4\;A/cm^2$ at 2 T and 77 K.

Irreversible Magnetization of MgB2 Superconductor

  • Kim, Mun-Seog;Kim, Kyu-Tae;Kim, Wan-Seop;Park, Po-Gyu;Lee, Kyu-Won;Lee, Sung-Ik
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.157-162
    • /
    • 2005
  • We report the magnetic-field dependence of the irreversible magnetization of binary superconductor $MgB_2$. For the temperature region of $T\;<\;0.9T_c$, the contribution of the bulk pinning to the magnetization overwhelms that of the surface pinning. This was evident from the fact that the magnetization curves, M(H), were well described by the critical-state model without considering the reversible magnetization and the surface pinning effect. It was also found that the M(H) curves at various temperatures scaled when the field and the magnetization were normalized by the characteristic caling factors H$\ast$(T) and M$\ast$(T), respectively. This feature suggests that the pinning mechanism determining the hysteresis in M(H) is unique below $T\;=\;T_c$.

Formation of $ZrO_2$ nanodots for the enhanced flux pinning properties in high $T_c$ superconducting films (초전도 자속고정 특성 향상을 위한 $ZrO_2$ 나노점의 형성 연구)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Kim, Young-Kuk;Lee, Hye-Moon;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.15-18
    • /
    • 2008
  • To achieve high transport current without degradation under magnetic field, it is essential to artificially generate the pinning sites at which moving magnetic flux can be pinned. In this work, $ZrO_2$ nanodots were formed on the substrate surface using electro-spray deposition method. On top of the nanodots, the extended and effective pinning centers can be created. The positively charged Zr precursor solution was sprayed out from the needle using the corona discharge phenomena. Then, the sprayed precursor was deposited onto the negatively charged substrate surface followed by the heat treatment under the controlled atmosphere. Using the electrostatic force among the charged particles of precursor, evenly distributed and nano-sized dots were formed on the substrate surface. The size and density of the nanodots were studied by Atomic Force Microscopy. Also discussed are the effect of the deposition time and solution concentration on the size and density of the nanodot and processing variables in electro-spray method for the effective flux pinning centers in the superconducting films.

Neutron Irradiation Effect of YBa2Cu3O7-y Superconductor (YBa2Cu3O7-y 초전도 벌크의 중성자 조사 효과)

  • Lee, Sang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.438-441
    • /
    • 2021
  • The electrical characteristics of single-crystal composite superconductors produced by a melting process were studied by neutron irradiation. In order to improve the current characteristics of the YBa2Cu3O7-y superconductor, it is necessary to form an effective flux pinning center inside the superconductor. In this study, an increase in flux pinning was attempted through neutron irradiation onto YBa2Cu3O7-y superconductors. The neutron irradiation was performed at 30 MeV for 500 sec, The electrical properties of the superconductors were measured in a magnetic field of 5 Tesla at 50 K using a magnetic properties measurement system (MPMS). After neutron irradiation, the critical current density of the YBa2Cu3O7-y superconductor in a 1 Tesla magnetic field was 1×105 A/cm2. Once neutrons were irradiated at 30 MeV and 10 μA for 500 sec, the critical current density was observed to increase significantly. When neutrons are irradiated to a superconductor, micro-defects are created in the superconductor, and they act as flux pinning centers that hold the magnetic field generated when an electric current flows.

The superconductivity and pinning properties of Y2O3-doped GdBa2Cu3O7-δ films prepared by pulsed laser deposition

  • Oh, Won-Jae;Park, Insung;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.41-45
    • /
    • 2018
  • We have investigated the effect of $Y_2O_3$ nanoparticles on the pinning properties of $Y_2O_3$-doped $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) films. Both undoped and $Y_2O_3$-doped GdBCO films were grown on $CeO_2$-buffered MgO (100) single crystal substrates by pulsed laser deposition (PLD) using KrF (${\lambda}=248nm$) laser. The $Y_2O_3$ doping contents were controlled up to ~ 2.5 area% by varying the internal angles of $Y_2O_3$ sectors put on the top surface of GdBCO target. Compared with the $Gd_2O_3$-doped GdBCO films previously reported by our group [1], the $Y_2O_3$-doped GdBCO films exhibited less severe critical temperature ($T_c$) drop and thus slightly enhanced critical current densities ($J_c$) and pinning force densities ($F_p$) at 65 K for the applied field parallel to the c-axis of the GdBCO matrix (B//c) with increasing the doping content. Below 40 K, the in-field $J_c$ and $F_p$ values of all $Y_2O_3$-doped GdBCO films exhibited higher than those of undoped GdBCO film, suggesting that $Y_2O_3$ inclusions might act as effective pinning centers.

Flux Pinning Properties of REBCO coated conductors for High Field Magnets

  • Awaji, Satoshi;Watanabe, Kazuo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.1-4
    • /
    • 2011
  • From the viewpoint of high field application, the mechanical and critical current properties of recently developed $REBa_2Cu_3O_y$ (RE123, RE: rare-earth) coated conductors are summarized. In addition, effective flux pinning mechanisms in RE123 are also introduced. As one of the examples for high field application, the upgrading of the 18 T cryogen-free superconducting magnet is shown. The large anisotropy of $J_c$ is a problem at low temperature and high magnetic field. The nanorod is considered as the useful methods to improve the anisotropy of $J_c$, although its efficiency becomes small at low temperature.

Recent Development of Bulk High-Tc Superconductors

  • Yoo, Sang-Im
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.88-95
    • /
    • 2002
  • Recent development in the field of RE-Ba-Cu-O (REBCO, RE: Y or rare earth elements) bulk high-Tc superconductors (HTS) is reviewed in the present paper. After the fatal weak link problem of sintered REBCO superconductors has been overcome by melt processing, this field has been greatly advanced during last ten years. The critical current density $J_c$ at 77 K has been enhanced by introducing effective flux pinning sites into the $REBa_2Cu_3O_y$ (RE123) superconducting matrix. Large melt-textured REBCO bulk crystals have been fabricated with the TSMG(top-seeded melt growth) technique. Mechanical properties of REBCO bulks have been improved by using the Ag additive or epoxy resin. Real bulk applications such as current lead, fault current limiter, flywheel energy storage system, magnetic field source, magnetic separation system, and etc., surely come true near future.

  • PDF

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M.;Shin, G.M.;Joo, Y.S.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.15-20
    • /
    • 2013
  • We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Flux pinning properties of rf-sputtered YBCO films with $BaZrO_3$ doping (스퍼터링법에 의한 $BaZrO_3$도핑 YBCO 박막의 자속고정 특성 연구)

  • Chung, K.C.;Kim, Y.K.;Wang, X.L.;Dou, S.X.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.374-374
    • /
    • 2009
  • We have fabricated pure YBCO films and $BaZrO_3$ doped ones on $CeO_2$ buffered YSZ single crystal substrates using rf-sputtering method. In this work, pure YBCO and 2 vol% BZO doped YBCO target were used to investigate the flux pinning properties of BZO doped YBCO films compared to undoped ones. BZO nanodots within the superconducting materials was known to comprise the self-assembled columnar defects along the c-axis from the bottom of YBCO films up to the top surface, thus can be a very strong pinning sites in the applied magnetic field parallel to them. We will discuss the possibility of growing self-assembled columnar defects in the rf-sputtering method. It is speculated that BZO and YBCO phases can separate and BZO form nanodots surrounded by YBCO epitaxial layers and continuous phase separation and ordering between these two materials, which was well studied in Pulsed Laser Deposition method. For this purpose, some severe experimental conditions such as on-axis sputtering, shorter target-substrate distance, high rf-power, etc was adopted and their results will be presented.

  • PDF

Electrical Properties of a High Tc Superconductor for Renewed Electric Power Energy

  • Lee Sang-Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.371-375
    • /
    • 2006
  • Effects of $Ag_2O$ doping on the electromagnetic properties in the BiSrCaCuO superconductor. The electromagnetic properties of doped and undoped $Ag_2O$ in the BiSrCaCuO superconductor were evaluated to investigate the contribution of the pinning centers. It was confirmed experimentally that a larger amount of magnetic flux was trapped in the $Ag_2O$ doped sample than in the undoped one, indicating that the pinning centers of magnetic flux are related closely to the occurrence of the magnetic effect. We have fabricated superconductor ceramics by the chemical process. A high Tc superconductor with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_y$ was prepared by the organic metal salts method. Experimental results suggest that the intermediate phase formed before the formation of the superconductor phase may be the most important factor. The relation between electromagnetic properties of Bi HTS and the external applied magnetic field was studied. The electrical resistance of the superconductor was increased by the application of the external magnetic field. But the increase in the electrical resistance continues even after the removal of the magnetic field. The reason is as follows; the magnetic flux due to the external magnetic field penetrates through the superconductor and the penetrated magnetic flux is trapped after the removal of the magnetic flux. During the sintering, doped $Ag_2O$ was converted to Ag particles that were finely dispersed in superconductor samples. It is considered that the area where normal conduction takes place increases by adding $Ag_2O$ and the magnetic flux penetrating through the sample increases. The results suggested that $Ag_2O$ acts to amplify pinning centers of magnetic flux, contributing to the occurrence of the electromagnetic properties.