DOI QR코드

DOI QR Code

A comparative study on the flux pinning properties of Zr-doped YBCO film with those of Sn-doped one prepared by metal-organic deposition

  • Choi, S.M. (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Shin, G.M. (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Joo, Y.S. (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University) ;
  • Yoo, S.I. (Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University)
  • Received : 2013.12.10
  • Accepted : 2013.12.20
  • Published : 2013.12.31

Abstract

We investigated the flux pinning properties of both 10 mol% Zr-and Sn-doped $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) films with the same thickness of ~350 nm for a comparative purpose. The films were prepared on the $SrTiO_3$ (STO) single crystal substrate by the metal-organic deposition (MOD) process. Compared with Sn-doped YBCO film, Zr-doped one exhibited a significant enhancement in the critical current density ($J_c$) and pinning force density ($F_p$). The anisotropic $J_{c,min}/J_{c,max}$ ratio in the field-angle dependence of $J_c$ at 77 K for 1 T was also improved from 0.23 for Sn-doped YBCO to 0.39 for Zr-doped YBCO. Thus, the highest magnetic $J_c$ values of 9.0 and $2.9MA/cm^2$ with the maximum $F_p$ ($F_{p,max}$) values of 19 and $5GN/m^3$ at 65 and 77 K for H // c, respectively, could be achieved from Zr-doped YBCO film. The stronger pinning effect in Zr-doped YBCO film is attributable to smaller $BaZrO_3$ (BZO) nanoparticles (the average size ${\approx}28.4$ nm) than $YBa_2SnO_{5.5}$ (YBSO) nanoparticles (the average size ${\approx}45.0$ nm) incorporated in Sn-doped YBCO film since smaller nanoparticles can generate more defects acting as effective flux pinning sites due to larger incoherent interfacial area for the same doping concentration.

Keywords

References

  1. P. Mele, K. Matsumoto, T. Horide, O. Miura, A. Ichinose, M. Mukaida, Y. Yoshida and S. Horii, Supercond. Sci. Technol. 19 , 44, 2006. https://doi.org/10.1088/0953-2048/19/1/008
  2. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida and S. Horii, Supercond. Sci. Technol. 20, 616, 2006.
  3. J. L. Macmanus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley and D. E. Peterson, Nature materials 3, 439, 2004. https://doi.org/10.1038/nmat1156
  4. S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman and D. F. Lee, Science 311, 911, 2006.
  5. J. Hanisch, C. Cai, R. Huhne, L. Schultz and B. Holzapfel, Appl. Phys. Lett. 86, 122508, 2005. https://doi.org/10.1063/1.1894599
  6. C. V. Varanasi, P. N. Barnes, J. Burke, L. Brunke, I. Maartense, T. J. Haugan, E. A. Stinzianni, K. A. Dunn and P. Haldar, Supercond. Sci. Technol. 19, L37, 2006. https://doi.org/10.1088/0953-2048/19/10/L01
  7. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii and R. Kita, Supercond. Sci. Technol. 21, 032002, 2008. https://doi.org/10.1088/0953-2048/21/3/032002
  8. P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii and R. Kita, Supercond. Sci. Technol. 21, 125017, 2008. https://doi.org/10.1088/0953-2048/21/12/125017
  9. J. Hanisch, C. Cai, V. Stehr, R. Huhne, J. Lyubina, K. Nenkov, G. Fuchs, L. Schultz and B. Holzapfel, Supercond. Sci. Technol. 19, 354, 2006. https://doi.org/10.1088/0953-2048/19/5/S40
  10. H. Kai, M. Mukaida, S. Horii, A. Ichinose, R. Kita, S. Katog, K. Matsumoto, Y. Yoshida, R. Teranishi, K. Yamada, N. Mori, Physica C 463-465, 895, 2007. https://doi.org/10.1016/j.physc.2007.04.273
  11. S. A. Harrington, J. H. Durrell, B. Maiorov, H. Wang, S. C. Wimbush, A. Kursumovic, J. H. Lee, and J. L. MacManus-Driscoll, Supercond. Sci. Technol. 22, 022001, 2009. https://doi.org/10.1088/0953-2048/22/2/022001
  12. S. H. Wee, A. Goyal, E. D. Specht, C. Cantoni, Y. L. Zuev, V. Selvamanickam and S. Cook, Phys. Rev. B 81, 140503, 2010. https://doi.org/10.1103/PhysRevB.81.140503
  13. S. H. Wee, C. Cantoni, Y. L. Zuev, E. D. Specht and A. Goyal, J. Am. Ceram. Soc., 95, 1174, 2012. https://doi.org/10.1111/j.1551-2916.2012.05084.x
  14. S. H. Wee, A. Goyal, J. Li, Y. L. Zuev and S. Cook, J. Appl. Phys. 102, 063906, 2007. https://doi.org/10.1063/1.2781534
  15. T. Ozaki, Y. Yoshida, Y. Ichino, Y. Takai, K. Matsumoto, A. Ichinose, S. Horii and M. Mukaida, Physica C 468, 1615, 2008. https://doi.org/10.1016/j.physc.2008.05.083
  16. K. Takahashi, H. Kobayashi, Y. Yamada, A. Ibi, H. Fukushima, M. Konishi, S. Miyata, Y. Shiohara, T. Kato and T. Hirayama, Supercond. Sci. Technol. 19, 924, 2006. https://doi.org/10.1088/0953-2048/19/9/007
  17. M. Haruta, T. Fujiyoshi, T. Sueyoshi, K. Dezaki, D. Ichigosaki, K. Miyahara, R. Miyagawa, M. Mukaida, K. Matsumoto, Y. Yoshida, A. Ichinose and S. Horii, Supercond. Sci. Technol. 19, 803, 2006. https://doi.org/10.1088/0953-2048/19/8/019
  18. S. Yasunaga, M. Mukaida, S. Horii, R. Kita, S. Kato, A. Ichinose, Y. Yoshida, K. Matsumoto, R. Teranishi, K. Yamada and N. Mori, Physica C 463-465, 900, 2007. https://doi.org/10.1016/j.physc.2007.04.272
  19. X. M. Cui, B. W. Tao, Z. Tian, J. Xiong, X. F. Zhang and Y. R. Li, Supercond. Sci. Technol. 19, 844, 2006. https://doi.org/10.1088/0953-2048/19/8/027
  20. J. A. Xia, N. J. Long, N. M. Strickland, P. Hoefakker, E. F. Talantsev, X. Li, W. Zhang, T. Kodenkandath, Y. Huang and M. W. Rupich, Supercond. Sci. Technol. 20, 880, 2007. https://doi.org/10.1088/0953-2048/20/8/027
  21. W. Zhang, Y. Huang, X. Li, T. Kodenkandath, M. W. Rupich, U. Schoop, D. T. Verebelyi, C. L. H. Thieme, E. Siegal, T. G. Holesinger, B. Maiorov, L. Civale, D. J. Miller, V. A. Maroni, J. Li, P. M. Martin, E. D. Specht, A. Goyal and P. Paranthaman, IEEE Trans. Appl. Supercond. 17, 3347, 2007. https://doi.org/10.1109/TASC.2007.899438
  22. J. Gutierrez, A. Llordes, J. Gazquez, M. Gibert, N. Roma, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig and X. Obradors, Nature materials 6, 367, 2007. https://doi.org/10.1038/nmat1893
  23. T. Puig, J. Gutierrez, A. Pomar, A. Llordes, J. Gazquez, S. Ricart, F. Sandiumenge and X. Obradors, Supercond. Sci. Technol. 21, 034008, 2008. https://doi.org/10.1088/0953-2048/21/3/034008
  24. N. M. Strickland, N. J. Long, E. F. Talantsev, P. Hoefakker, J. Xia, M. W. Rupich, T. Kodenkandath, W. Zhang, X. Li and Y. Huang, Physica C 468, 183, 2008. https://doi.org/10.1016/j.physc.2007.11.013
  25. M. Miura, T. Kato, M. Yoshizumi, Y. Yamada, T. Izumi, T. Hirayama and Y. Shiohara, Appl. Phys. Express. 2, 023002, 2009. https://doi.org/10.1143/APEX.2.023002
  26. J. A. Xia, N. J. Long, N. M. Strickland, P. Hoefakker and E. F. Talantsev, Curr. Appl. Phys. 8, 262, 2008. https://doi.org/10.1016/j.cap.2007.10.080
  27. M. Miura, T. Kato, M. Yoshizumi, Y. Yamada, T. Izumi, T. Hirayama and Y. Shiohara, IEEE Trans. Appl. Supercond. 19, 3275, 2009. https://doi.org/10.1109/TASC.2009.2018521
  28. A. Pomar, V. R. Vlad, A. Llordes, A. Palau, J. Gutierrez, S. Ricart, T. Puig, X. Obradors and A. Usoskin, IEEE Trans. Appl. Supercond. 19, 3258, 2009. https://doi.org/10.1109/TASC.2009.2018422
  29. N. M. Strickland, N. J. Long, E. F. Talantsev, P. Hoefakker, J. Xia, M. W. Rupich, T. Kodenkandath, W. Zhang, X. Li and Y. Huang, Curr. Appl. Phys. 8, 372, 2008. https://doi.org/10.1016/j.cap.2007.10.034
  30. J. W. Lee, Y. S. Joo, S. M. Choi and S. I. Yoo, IEEE Trans. Appl. Supercond. 23, 8002704, 2013. https://doi.org/10.1109/TASC.2013.2244155
  31. N. M. Strickland, E. F. Talantsev, J. A. Xia, N. J. Long, M. W. Rupich, X. Li and W. Zhang, IEEE Trans. Appl. Supercond. 19, 3140, 2009. https://doi.org/10.1109/TASC.2009.2018735
  32. Y. Miyanaga, R. Teranishi, K. Yamada, N. Mori, M. Mukaida, T. Kiss, M. Inoue, K. Nakaoka, M. Yoshizumi, T. Izumi, Y. Shiohara, M. Nanba, S. Awaji and K. Watanabe, Physica C 469, 1418, 2009. https://doi.org/10.1016/j.physc.2009.05.049
  33. R. Teranishi, Y. Miyanaga, K. Yamada, N. Mori, M. Mukaida, M. Inoue, T. Kiss, M. Miura, M. Yoshizumi, T. Izumi, M. Namba, S. Awaji, and K. Watanabe, Journal of Physics: Conference Series 234, 022039, 2010. https://doi.org/10.1088/1742-6596/234/2/022039
  34. R. Teranishi, Y. Miyanaga, K. Yamada, N. Mori, M. Mukaida, M. Miura, M. Yoshizumi, T. Izumi, M. Namba, S. Awaji, and K. Watanabe, Physica C 470, 1246, 2010. https://doi.org/10.1016/j.physc.2010.05.085
  35. S. Ye, H. Suo, Z. Wu, M. Liu, Y. Xu, L. Ma, and M. Zhou, Physica C 471, 265, 2011. https://doi.org/10.1016/j.physc.2011.02.003
  36. S. Engel, T. Thersleff, R. Huhne, L. Schultz and B. Holzapfel, Appl. Phys. Lett. 90, 102505, 2007. https://doi.org/10.1063/1.2711761
  37. A. Llordes, A. Palau, J. Gazquez, M. Coll, R. Vlad, A. Pomar, J. Arbiol, R. Guzman, S. Ye, V. Rouco, F. Sandiumenge, S. Ricart, T. Puig, M. Varela, D. Chateigner, J. Vanacken, J. Gutierrez, V. Moshchalkov, G. Deutscher, C. Magen and X. Obradors, Nature materials 11, 329, 2012. https://doi.org/10.1038/nmat3247
  38. S. M. Choi, G. M. hin, S. I. Yoo, Physica C 485, 154, 2013. https://doi.org/10.1016/j.physc.2012.12.007
  39. G. M. Shin, K. P. Ko, K. J. Song, S. H. Moon and S. I. Yoo, Physica C 468, 1567, 2008. https://doi.org/10.1016/j.physc.2008.05.068
  40. R. Kita, S. Kato, T. Nakamura, O. Miura, R. Teranishi, S. Yasunaga, H. Kai, M. Mukaida, A. Ichinose, K. Matsumoto, M. S. Horii, Y. Yoshida, Physica C 468, 1391, 2008. https://doi.org/10.1016/j.physc.2008.05.121
  41. S. Kang, A. Goyal, J. Li, P. Martin, A. Ijaduola, J. R. Thompson, and M. Paranthaman, Physica C 457, 41, 2007. https://doi.org/10.1016/j.physc.2007.02.017
  42. A. Goyal, S. H. Wee, E. Specht, C. Cantoni, Y. Zuev, Y. Gao, J. Meng, J. Sinclair, J. R. Thompson and D. K. Christen, presented at the Applied Superconductivity Conference, 2010.
  43. F. Lu, F. Kametani and E. E. Hellstrom, Supercond. Sci. Technol. 25, 015011, 2012. https://doi.org/10.1088/0953-2048/25/1/015011
  44. B. Gao, L. Ying, J. Liu, Y. Lu, Z. Liu and C. Cai, International Journal of Modern Physics B 23, 3475, 2009.
  45. V. F. Solovyov, Q. Li, H. Wiesmann, P. Oleynikov and Y. Zhu, Supercond. Sci. Technol. 21, 125013, 2008. https://doi.org/10.1088/0953-2048/21/12/125013
  46. G. K. Williamson and W. H. Hall, Acta Metallurgica 1, 22, 1953. https://doi.org/10.1016/0001-6160(53)90006-6