• Title/Summary/Keyword: pin to plate

Search Result 171, Processing Time 0.028 seconds

Active Vibration Control of Cantilever Plate Equipped with MFC Actuators (MFC 액츄에이터가 부착된 외팔 평판의 능동 진동 제어)

  • Kwak, Moon K.;Yang, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.533-534
    • /
    • 2013
  • This paper is concerned with the active vibration control of rectangular plate equipped with MFC actuators. To this end, the dynamic model of the rectangular plate bonded with MFC sensors and actuators was derived by means of the Rayleigh-Ritz method. The MFC actuator and sensor were modeled based on the pin-force assumption. The theoretical model was then validated experimentally. The multiinput and multi-output (MIMO) Positive Position Feedback (PPF) controller was designed based on the natural mode shapes and implemented using dSpace system and Simulink. The proposed control algorithm was applied to the cantilever plate having two MFC wafers having both sensor and actuator. Numerical and experimental investigations were carried out. Both theoretical and experimental result shows that the proposed control algorithm can effectively suppress vibrations of cantilever plate.

  • PDF

Optimization to Minimize Deflection of a Large LCD Glass Plate with Multi-Simply Supports (다점 지지된 TFT-LCD 대형 유리기판의 처짐 최소 최적화)

  • Lee H.Y.;Lee Y.S.;Byun S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.861-864
    • /
    • 2005
  • A LCD glass plate is supported by multi-pin and golf-tee type support. In the FEM analysis, the support condition is treated as simply supported boundary .condition. In this study, the optimization on the location of multi-simply support is conducted. The size optimization method of ANSYS 8.0 is used as the optimization tool to search for the optimal support location of LCD glass plate. In the manufacturing process, the support condition is a fatal factor of quality control of LCD production. From the results of optimization, deflection decreases 51% compared with the original model.

  • PDF

Friction Stir Spot Welding of AA5052 Aluminum Alloy and C11000 Copper Lap Joint

  • Prasomthong, Suriya;Sangsiri, Pradit;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.145-152
    • /
    • 2015
  • The article aims to apply a friction stir spot welding for producing the lap joint between AA5052 aluminum alloy and C11000 copper alloy. The dimension of the materials was 100 mm in length, 30 mm in width and 1.0 mm in thickness. The copper plate was set overlap the aluminum plate by 30 mm. The welding parameter was the rotating speed of 2500-4000 rpm, the pin inserting rate of 2-8 mm/min and the holding time of 6 sec. The mechanical properties test and the microstructure investigation were performed to evaluate the lap joint quality. The summarized results are as follows. The friction stir spot welding could produce effectively the lap joint between AA5052 and C11000 copper. Increase of the rotating speed and holding time directly affected to decrease the tensile shear strength of the lap joint. The optimized welding parameters in this study that indicated the tensile shear strength of 864 N was the rotating speed of 3500 rpm, the pin inserting rate of 6 mm/min and the holding time of 4sec. The experimental results also showed that the hardness of the weld metal was lower than that of the base materials.

manufacturing micro CPL (Capillary Pumped Loop)by using LIGA process (LIGA process를 이용한 micro CPL(Capillary Pumped Loop)제작)

  • Cho, Jin-Woo;Jung, Suk-Won;Park, Joon-Shik;Park, Sun-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1881-1883
    • /
    • 2001
  • We manufactured a micro CPL by LlGA process, a new conceptual ultra-fine and precise forming method, using X-ray lithography process. We fabricated a BN X-ray mask having properties of good X-ray transmittance and large mechanical strength. Micro CPL was manufactured by dividing into an upper plate and a low plate. Each of plates was bonded by Ag paste screen printing. The upper plate was fabricated on glass wafer to observe flow and phase transformation of cooling solution. The lower plate was manufactured by Cu electroplating for good heat transmission. Precision of inner Parts, micro pin and micro channel, of manufactured micro CPL is under ${\pm}2{\mu}m$.

  • PDF

Electro-elastic analysis of piezoelectric laminated plates

  • Zhao, Minghao;Qian, Caifu;Lee, S.W.R.;Tong, Pin;Suemasu, H.;Zhang, Tong-Yi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.63-81
    • /
    • 2007
  • Based on the Kirchhoff hypothesis of normal-remain-normal, the present work analyses piezoelectric laminated plates, wherein poled piezoelectric laminae are transversely isotropic and function as actuators. A quadric electric field is induced inside a piezoelectric lamina under a given applied voltage and mechanical bending. The governing equations for the piezoelectric laminated plate derived from the principle of virtual work in terms of the electric enthalpy have the same forms as those for a conventional composite laminated plate. We use rectangular sandwich plates of Al/PZT/Al and PZT/Al/PZT with four simply supported edges to demonstrate the prediction of the maximum bending stress in the PZT layer. The analytic solutions are verified by three-dimensional finite element analysis.

Effects of the Support Condition on Out-of-plane Deformation by Welding (정반의 지지조건이 용접 면외변형에 미치는 영향)

  • 박정웅;고대은;신용택;이해우;이재원
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.55-60
    • /
    • 1999
  • In thin plate welding, welding deformation is deformation is produced in special form like buckling distortion, which is different from one in thick plate welding, large quantitatively, and has complicated form. Therefore, a particular countermeasure to prevent the welding deformation in manufacturing process is requested. Otherwise it takes more time to straighten the welding deformation than to fabricated a steel structure newly and in case of failing to straighten the welding deformation in beginning of the flame straightening process, even if the flame straitening is completed, the appearances is not good and sometimes eve refabrication is needed. To minimize these problems. In this present paper, the effects of the condition of support pin on out-of plane deformation produced by thin plate Butt welding in investigated through experiment and the countermeasure to prevent the welding deformation in suggested.

  • PDF

Structural Performance of Joints for Partial Reinforced Beam Using GFRP Laminated Plate and Cylindrical Reinforced LVL Column (GFRP적층판을 활용한 보강보부재와 원통형 단판적층기둥재 접합부의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Jung-Jae;Suh, Jin-Suk;Park, Sang-Bum;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.282-289
    • /
    • 2014
  • After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at $150^{\circ}C$ with pressure of $1.96N/mm^2$. A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.

Additional fixation using a metal plate with bioresorbable screws and wires for robinson type 2B clavicle fracture

  • Shin, Woo Jin;Chung, Young Woo;Kim, Seon Do;An, Ki-Yong
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.4
    • /
    • pp.198-202
    • /
    • 2020
  • Simple clavicle fractures can achieve satisfactory results through conservative treatment, and the less frequency of nonunion. Non-union or malunion can occur in displaced clavicle fractures or comminuted shaft fractures. Treatment of displaced comminuted clavicle shaft fractures is performed by holding together the free fragments with interfragmentary screws or wires and fixing them to the clavicle with a plate. Therefore, we performed interfragmentary fixation using open reduction and internal fixation with bioresorbable screws (Mg-Ca alloy, Resomet bioresorbable bone screw; U&I Corp.) and bioresorbable wires (Mg-Ca alloy, Resomet bioresorbable K-wire and pin, U&I Corp.) for displaced comminuted clavicle fractures (Robinson type 2B) and additionally used a metal plate. We expected decreased irritation and infection due to absorption after surgery. We report four cases that were treated in this way.